TFLite-Elixir
TensorFlow Lite-Elixir binding with TPU support.
Try it in Livebook
# will download and install precompiled version
Mix.install([
{:tflite_elixir, "~> 0.1.3"}
])
# parrot.jpeg and the tflite file can be found in the test/test_data directory
interpreter = TFLiteElixir.Interpreter.new!("/path/to/mobilenet_v2_1.0_224_inat_bird_quant.tflite")
input =
StbImage.read_file!("/path/to/parrot.jpeg")
|> StbImage.resize(224, 224)
|> StbImage.to_nx()
[output_tensor_0] = TFLiteElixir.Interpreter.predict(interpreter, input)
nx_tensor =
TFLiteElixir.TFLiteTensor.to_binary(output_tensor_0)
|> Nx.from_binary(:u8)
# get top k predictions (numerical id of the class)
# classes can be found in this file,
# https://raw.githubusercontent.com/cocoa-xu/tflite_elixir/main/test/test_data/inat_bird_labels.txt
# each line corresponds to a class
# and the first line = id 0
top_k = 5
sorted_indices = Nx.argsort(nx_tensor, direction: :desc)
top_k_indices = Nx.take(sorted_indices, Nx.iota({top_k}))
top_k_preds = Nx.to_flat_list(top_k_indices)
A better version of the above demo code can be found the examples directory, tpu.livemd. It supports both CPU and TPU, and it will show more information, including scores (confidence) and the class name of the predicted results. It's also more flexible where you can adjust different parameters like top_k
and threshold
(for confidence) and etc.
interpreter =
ClassifyImage.run(
model: "mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite",
input: "parrot.jpeg",
labels: "inat_bird_labels.txt",
top: 3,
threshold: 0.3,
count: 5,
mean: 128.0,
std: 128.0,
use_tpu: true,
tpu: "usb"
)
----INFERENCE TIME----
17.3ms
4.4ms
4.3ms
4.3ms
4.3ms
-------RESULTS--------
Ara macao (Scarlet Macaw): 0.71875
Platycercus elegans (Crimson Rosella): 0.07031
Coracias caudatus (Lilac-breasted Roller): 0.01953
Nerves Support
Prebuilt firmware (Experimental)
Prebuilt firmwares are available here.
Select the most recent run and scroll down to the Artifacts
section, download the firmware file for your board and run
fwup /path/to/the/downloaded/firmware.fw
In the nerves build, tflite_elixir
is integrated as one of the dependencies of the nerves_livebook project. This means that you can use livebook (as well as other pre-pulled libraries) to explore and evaluate the tflite_elixir
project.
The default password of the livebook is nerves
(as the time of writing, if it does not work, please check the nerves_livebook project).
Build from Source
- If prefer precompiled binaries
# for example
export MIX_TARGET=rpi4
# There is no need to explicitly set CPU architecture
# for the precompiled libedgetpu binaries. The arch
# is automatically detected by the `TARGET_ARCH`,
# `TARGET_OS` and `TARGET_ABI` environment vars.
#
# However, if you are using your own nerves target
# you can manually set the correct arch, e.g.,
# set `aarch64` for rpi4.
#
# Possible values including
# - aarch64
# - armv7l
# - riscv64
# - x86_64
export TFLITE_ELIXIR_CORAL_LIBEDGETPU_LIBRARIES=aarch64
- If prefer not to use precompiled binaries
# for example
export MIX_TARGET=rpi4
# then set env var TFLITE_ELIXIR_PREFER_PRECOMPILED to NO
export TFLITE_ELIXIR_PREFER_PRECOMPILED=NO
Demo
Mix Task Demo
- List all available Edge TPU
mix list_edgetpu
- Image classification
mix help classify_image
# Note: The first inference on Edge TPU is slow because it includes,
# loading the model into Edge TPU memory
mix classify_image \
--model test/test_data/mobilenet_v2_1.0_224_inat_bird_quant.tflite \
--input test/test_data/parrot.jpeg \
--labels test/test_data/inat_bird_labels.txt
Output from the mix task
----INFERENCE TIME----
Note: The first inference on Edge TPU is slow because it includes, loading the model into Edge TPU memory.
6.7ms
-------RESULTS--------
Ara macao (Scarlet Macaw): 0.70703
- Object detection
mix help detect_image
# Note: The first inference on Edge TPU is slow because it includes,
# loading the model into Edge TPU memory
mix detect_image \
--model test/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite \
--input test/test_data/cat.jpeg \
--labels test/test_data/coco_labels.txt
Output from the mix task
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
----INFERENCE TIME----
13.2ms
cat
id : 16
score: 0.953
bbox : [3, -1, 294, 240]
test files used here are downloaded from google-coral/test_data and wikipedia.
Demo code
Model: mobilenet_v2_1.0_224_inat_bird_quant.tflite
Input image:
- parrot.jpg
- Or use pre-converted input parrot.bin
Labels: inat_bird_labels.txt
alias Evision, as: Cv
alias TFLiteElixir, as: TFLite
# load labels
labels = File.read!("inat_bird_labels.txt") |> String.split("\n")
# load tflite model
filename = "mobilenet_v2_1.0_224_inat_bird_quant.tflite"
model = TFLite.FlatBufferModel.build_from_file(filename)
resolver = TFLite.Ops.Builtin.BuiltinResolver.new!()
builder = TFLite.InterpreterBuilder.new!(model, resolver)
interpreter = TFLite.Interpreter.new!()
:ok = TFLite.InterpreterBuilder.build!(builder, interpreter)
:ok = TFLite.Interpreter.allocate_tensors!(interpreter)
# verify loaded model, feel free to skip
# [0] = TFLite.Interpreter.inputs!(interpreter)
# [171] = TFLite.Interpreter.outputs!(interpreter)
# "map/TensorArrayStack/TensorArrayGatherV3" = TFLite.Interpreter.get_input_name!(interpreter, 0)
# "prediction" = TFLite.Interpreter.get_output_name!(interpreter, 0)
# input_tensor = TFLite.Interpreter.tensor(interpreter, 0)
# [1, 224, 224, 3] = TFLite.TFLiteTensor.dims!(input_tensor)
# {:u, 8} = TFLite.TFLiteTensor.type(input_tensor)
# output_tensor = TFLite.Interpreter.tensor(interpreter, 171)
# [1, 965] = TFLite.TFLiteTensor.dims!(output_tensor)
# {:u, 8} = TFLite.TFLiteTensor.type(output_tensor)
# parrot.bin - if you don't have :evision
binary = File.read!("parrot.bin")
# parrot.jpg - if you have :evision
# load image, resize it, covert to RGB and to binary
binary =
Cv.imread("parrot.jpg")
|> Cv.resize({224, 224})
|> Cv.cvtColor(Cv.cv_COLOR_BGR2RGB)
|> Cv.Mat.to_binary(mat)
# set input, run forwarding, get output
TFLite.Interpreter.input_tensor(interpreter, 0, binary)
TFLite.Interpreter.invoke(interpreter)
output_data = TFLite.Interpreter.output_tensor!(interpreter, 0)
# if you have :nx
# get predicted label
output_data
|> Nx.from_binary(:u8)
|> Nx.argmax()
|> Nx.to_scalar()
|> then(&Enum.at(labels, &1))
Coral Support
Dependencies
For macOS
# only required if not using precompiled binaries
# for compiling libusb
brew install autoconf automake
For some Linux OSes you need to manually execute the following command to update udev rules, otherwise, libedgetpu will fail to initialize Coral devices.
mix deps.get
bash "3rd_party/cache/${TFLITE_ELIXIR_CORAL_LIBEDGETPU_RUNTIME}/edgetpu_runtime/install.sh"
Compile-Time Environment Variable
-
TFLITE_ELIXIR_CORAL_SUPPORT
Enable Coral Support.
Default to
YES
. -
TFLITE_ELIXIR_CORAL_USB_THROTTLE
Throttling USB Coral Devices. Please see the official warning here, google-coral/libedgetpu.
Default value is
YES
.Note that only when
TFLITE_ELIXIR_CORAL_USB_THROTTLE
is set toNO
,:tflite_elixir
will use the non-throttled libedgetpu libraries. -
TFLITE_ELIXIR_CORAL_LIBEDGETPU_LIBRARIES
Choose which ones of the libedgetpu libraries to copy to the
priv
directory of the:tflite_elixir
app.Default value is
native
- only native libraries will be downloaded and copied.native
corresponds to the host OS and CPU architecture when compiling this library.When set to a specific value, e.g,
darwin_arm64
ordarwin_x86_64
, then the corresponding one will be downloaded and copied. This option is expected to be used for cross-compiling, like with nerves.Available values for this option are:
Value OS/CPU aarch64
Linux arm64 armv7l
Linux armv7 k8
Linux x86_64 x86_64
Linux x86_64 riscv64
Linux riscv64 darwin_arm64
macOS Apple Silicon darwin_x86_64
macOS x86_64 x64_windows
Windows x86_64 -
TFLITE_ELIXIR_CACHE_DIR
Cache directory for the runtime zip file.
Default value is
./3rd_party/cache
.
Installation
If available in Hex, the package can be installed
by adding tflite_elixir
to your list of dependencies in mix.exs
:
def deps do
[
{:tflite_elixir, "~> 0.1.0", github: "cocoa-xu/tflite_elixir"}
]
end
Documentation can be generated with ExDoc and published on HexDocs. Once published, the docs can be found at https://hexdocs.pm/tflite_elixir.