ApproxFun

Julia package for function approximation


Keywords
approximation, julia, partial-differential-equations
License
Other

Documentation

ApproxFun.jl

Build Status Coverage Status Join the chat at https://gitter.im/ApproxFun/ApproxFun.jl

ApproxFun is a package for approximating functions. It is heavily influenced by the Matlab package Chebfun and the Mathematica package RHPackage.

Take your two favourite functions on an interval and create approximations to them as simply as:

using ApproxFun
x = Fun(identity,[0.,10.])
f = sin(x^2)
g = cos(x)

Evaluating f(.1) will return a high accuracy approximation to sin(0.01). All the algebraic manipulations of functions are supported and more. For example, we can add f and g^2 together and compute the roots and extrema:

h = f + g^2
r = roots(h)
rp = roots(h')

using Plots
plot(h)
scatter!(r,h(r))
scatter!(rp,h(rp))

Differentiation and integration

Notice from above that to find the extrema, we used ' overridden for the differentiate function. Several other Julia base functions are overridden for the purposes of calculus. Because the exponential is its own derivative, the norm is small:

f = Fun(x->exp(x),[-1.,1.])
norm(f-f')

Similarly, cumsum defines an indefinite integration operator:

g = cumsum(f)
g = g + f(-1)
norm(f-g)

Funs in ApproxFun are instances of Julia types with one field to store coefficients and another to describe the function space. Similarly, each function space has one field describing its domain, or another function space. Let's explore:

x = Fun(identity)
f = exp(x)
g = f/sqrt(1-x^2)
space(f)   # Chebyshev(Interval(-1.0,1.0))
space(g)   # JacobiWeight(-0.5,-0.5,Interval(-1.0,1.0))

The absolute value is another case where the space of the output is inferred from the operation:

f = Fun(x->cospi(5x))
g = abs(f)
space(f)   # Chebyshev(Interval(-1.0,1.0))
space(g)   # PiecewiseSpace((Chebyshev(Interval(-1.,-.9)),...))

Algebraic and differential operations are also implemented where possible, and most of Julia's built-in functions are overridden to accept Funs:

x = Fun()
f = erf(x)
g = besselj(3,exp(f))
h = airyai(10asin(f)+2g)

Solving ordinary differential equations

Solve the Airy ODE u'' - x u = 0 as a BVP on [-1000,200]:

x = Fun(identity,[-1000.,200.])
d = domain(x)
D = Derivative(d)
B = dirichlet(d)
L = D^2 - x
u = [B;L] \ [airyai(d.a);airyai(d.b)]
plot(u)

Nonlinear Boundary Value problems

Solve a nonlinear boundary value problem satisfying the ODE 0.001u'' + 6*(1-x^2)*u' + u^2 = 1 with boundary conditions u(-1)==1, u(1)==-0.5 on [-1,1]:

x=Fun()
u0=0.x

N=u->[u(-1.)-1.,u(1.)+0.5,0.001u''+6*(1-x^2)*u'+u^2-1.]
u=newton(N,u0)
plot(u)

Periodic functions

There is also support for Fourier representations of functions on periodic intervals. Specify the space Fourier to ensure that the representation is periodic:

f = Fun(cos,Fourier([-π,π]))
norm(f' + Fun(sin,Fourier([-π,π]))

Due to the periodicity, Fourier representations allow for the asymptotic savings of 2/π in the number of coefficients that need to be stored compared with a Chebyshev representation. ODEs can also be solved when the solution is periodic:

s = Chebyshev([-π,π])
a = Fun(t-> 1+sin(cos(2t)),s)
L = Derivative() + a
f = Fun(t->exp(sin(10t)),s)
B = periodic(s,0)
uChebyshev = [B;L]\[0.;f]

s = Fourier([-π,π])
a = Fun(t-> 1+sin(cos(2t)),s)
L = Derivative() + a
f = Fun(t->exp(sin(10t)),s)
uFourier = L\f

length(uFourier)/length(uChebyshev),2/π
plot(uFourier)

Sampling

Other operations including random number sampling using [Olver & Townsend 2013]. The following code samples 10,000 from a PDF given as the absolute value of the sine function on [-5,5]:

f = abs(Fun(sin,[-5,5]))
x = ApproxFun.sample(f,10000)
plot(x;t=:density)
plot!(f/sum(f))

Solving partial differential equations

We can solve PDEs, the following solves Helmholtz Δu + 100u=0 with u(±1,y)=u(x,±1)=1 on a square

d = Interval()^2                            # Defines a rectangle

u = [dirichlet(d);lap(d)+100I]\ones(4)      # First four entries of rhs are
                                            # boundary conditions
surface(u)                                  # surface plot

High precision

Solving differential equations with high precision types is available. The following calculates e to 300 digits by solving the ODE u' = u:

with_bigfloat_precision(1000) do
    d=Interval{BigFloat}(0,1)
    D=Derivative(d)
    u=[ldirichlet();D-I]\[1]
    u(1)
end

Further reading

The ApproxFun Documentation is a work-in-process Wiki documentating the internal workings of ApproxFun

References

S. Olver & A. Townsend (2014), A practical framework for infinite-dimensional linear algebra, Proceedings of the 1st First Workshop for High Performance Technical Computing in Dynamic Languages, 57–62

A. Townsend & S. Olver (2014), The automatic solution of partial differential equations using a global spectral method, J. Comp. Phys., 299: 106–123

S. Olver & A. Townsend (2013), Fast inverse transform sampling in one and two dimensions, arXiv:1307.1223

S. Olver & A. Townsend (2013), A fast and well-conditioned spectral method, SIAM Review, 55:462–489