A python library for Argo data beginners and experts

argo, argo-data, argo-floats, oceanography, python
pip install argopy==0.1.12


argopy logo argopy is a python library that aims to ease Argo data access, visualisation and manipulation for regular users as well as Argo experts and operators
Documentation JOSS
Usage License Python version
pypi dwn conda dwn
Release PyPI Conda
Development tests in FREE env tests in DEV env Documentation Status
Data sources Erddap status Argovis status
Profile count


Install the last release with conda:

conda install -c conda-forge argopy

or pip:

pip install argopy

But since this is a young library in active development, use direct installation from this repo to benefit from the latest version:

pip install git+http://github.com/euroargodev/argopy.git@master

The argopy library is tested to work under most OS (Linux, Mac, Windows) and with python versions 3.7 and 3.8.



Fetching Argo Data

Import the data fetcher:

from argopy import DataFetcher as ArgoDataFetcher

and then, set it up to request data for a specific space/time domain:

argo_loader = ArgoDataFetcher().region([-85,-45,10.,20.,0,10.])
argo_loader = ArgoDataFetcher().region([-85,-45,10.,20.,0,1000.,'2012-01','2012-12'])

for profiles of a given float:

argo_loader = ArgoDataFetcher().profile(6902746, 34)
argo_loader = ArgoDataFetcher().profile(6902746, np.arange(12,45))
argo_loader = ArgoDataFetcher().profile(6902746, [1,12])

or for one or a collection of floats:

argo_loader = ArgoDataFetcher().float(6902746)
argo_loader = ArgoDataFetcher().float([6902746, 6902747, 6902757, 6902766])

Once your fetcher is initialized you can trigger fetch/load data like this:

ds = argo_loader.to_xarray()  # or:
ds = argo_loader.load().data

By default fetched data are returned in memory as xarray.DataSet. From there, it is easy to convert it to other formats like a Pandas dataframe:

df = ArgoDataFetcher().profile(6902746, 34).load().data.to_dataframe()

or to export it to files:

ds = ArgoDataFetcher().region([-85,-45,10.,20.,0,100.]).to_xarray()
# or by profiles:

Fetching only Argo index

Argo index are returned as pandas dataframe. Index fetchers works similarly to data fetchers.

Load the Argo index fetcher:

    from argopy import IndexFetcher as ArgoIndexFetcher

then, set it up to request index for a specific space/time domain:

    index_loader = ArgoIndexFetcher().region([-85,-45,10.,20.])
    index_loader = ArgoIndexFetcher().region([-85,-45,10.,20.,'2012-01','2014-12'])

or for one or a collection of floats:

    index_loader = ArgoIndexFetcher().float(6902746)
    index_loader = ArgoIndexFetcher().float([6902746, 6902747, 6902757, 6902766])   

Once your fetcher is initialized you can trigger fetch/load index like this:

    df = index_loader.to_dataframe()  # or
    df = index_loader.load().index

Note that like the data fetcher, the index fetcher can use different sources, a local copy of the GDAC ftp for instance:

    index_fetcher = ArgoIndexFetcher(src='localftp', path_ftp='/path/to/your/argo/ftp/', index_file='ar_index_global_prof.txt')


For plottings methods, you'll need matplotlib and possibly cartopy and seaborn installed. Argo Data and Index fetchers provide direct plotting methods, for instance:

    ArgoDataFetcher().float([6902745, 6902746]).plot('trajectory')    


See the documentation page for more examples.

Development roadmap

See milestone here: https://github.com/euroargodev/argopy/milestone/3