An easy-to-use api for the closed-form continuous models in tensorflow


License
Apache-2.0
Install
pip install cfc-model==1.1.4

Documentation

PyPI 📦   PyTests Downloads

Closed-form Continuous-time Models

Closed-form Continuous-time Neural Networks (CfCs) are powerful sequential neural information processing units.

Paper Open Access: https://www.nature.com/articles/s42256-022-00556-7

Arxiv: https://arxiv.org/abs/2106.13898

Installation

pip install cfc-model

Requirements

  • Python 3.7 or newer
  • Tensorflow 2.4 or newer
  • Pandas
  • Numpy

For a fresh anaconda environment with the required dependencies:

conda env create --file environment.yml
conda activate cfc

Usage

Example

from cfc_model.dense_models import SequentialModel
import numpy as np
X = np.array([[1, 1, 1, 0], [1, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 0],
              [1, 0, 1, 0], [1, 1, 0, 1], [1, 0, 0, 1], [1, 0, 1, 0]])
y = np.array([0, 0, 1, 1, 1, 0, 1, 1])
model = SequentialModel()
model.fit(X, y)
y_pred = model.predict([1, 1, 0, 1]) # y_pred equals 0

Configuration

The following configuration states can be used

  • no_gate Runs the CfC without the (1-sigmoid) part
  • minimal Runs the CfC direct solution
  • use_ltc Runs an LTC with a semi-implicit ODE solver instead of a CfC
  • use_mixed Mixes the CfC's RNN-state with a LSTM to avoid vanishing gradients

If none of these flags are provided, the full CfC model is used

Example

# Runs an LTC with a semi-implicit ODE solver instead of a CfC
config = {"use_ltc": True}
model.fit(X, y, config=config)

Cite

@article{hasani_closed-form_2022,
	title = {Closed-form continuous-time neural networks},
	journal = {Nature Machine Intelligence},
	author = {Hasani, Ramin and Lechner, Mathias and Amini, Alexander and Liebenwein, Lucas and Ray, Aaron and Tschaikowski, Max and Teschl, Gerald and 	    Rus, Daniela},
	issn = {2522-5839},
	month = nov,
	year = {2022}