gram-tools

Utilities for streamlined aiogram bot development.


Keywords
aiogram-bot, aiogram-bot-template, aiogram-development, aiogram-tools, aiogram3, gram-tools, telegram, telegram-bot, utilities, utility
License
MIT
Install
pip install gram-tools==1.0.2

Documentation

gram_tools

Utilities for streamlined aiogram 3 bot development.

Features

  • đŸ“Ļ Message Packing: Serialize and deserialize Telegram messages with support for all media types
  • 🗄ī¸ Asset Management: Efficient handling of media files with caching and file_id reuse
  • 📚 CRUD Operations: Generic async CRUD operations for SQLAlchemy models
  • ⌨ī¸ Pagination: Flexible inline keyboard pagination with search capability
  • 🧩 Menu Builder: Create complex nested menus with ease
  • đŸŽ¯ FSM Visualizer: Generate visual diagrams of your Finite State Machines (FSM)

Installation

pip install gram-tools

Components

Message Packer

Pack and unpack Telegram messages with all their content for easy storage and reuse.

from gram_tools.packer import pack_message, unpack_message, send_packed_message, answer_packed_message

# Pack a message
packed = await pack_message(message)

# Send packed message
await send_packed_message(bot, chat_id, packed)

# Answer with packed message
await answer_packed_message(message, packed)

Whole Example

import asyncio
from aiogram import Bot, Dispatcher, Router
from aiogram.types import Message
from aiogram.filters import Command

from gram_tools.packer import pack_message, send_packed_message

API_TOKEN = "YOUR_BOT_TOKEN"

bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()

# In-memory storage for packed messages
packed_messages = {}

@router.message(Command("save"))
async def save_message(message: Message):
    if not message.reply_to_message:
        await message.answer("Please reply to the message you want to save.")
        return

    # Pack the replied message
    packed = await pack_message(message.reply_to_message)

    # Store the packed message using user's chat ID
    packed_messages[message.from_user.id] = packed
    await message.answer("Message saved!")

@router.message(Command("send"))
async def send_saved_message(message: Message):
    packed = packed_messages.get(message.from_user.id)
    if not packed:
        await message.answer("No message saved. Use /save to save a message.")
        return

    # Send the packed message back to the user
    await send_packed_message(bot, message.chat.id, packed)

async def main():
    dp.include_router(router)
    await dp.start_polling(bot)

if __name__ == "__main__":
    asyncio.run(main())

Asset Management

Efficiently handle media files with automatic file_id caching.

from gram_tools.assets import answer_with_asset, send_with_asset

# Send media file
await send_with_asset(bot, chat_id, "path/to/file.jpg", caption="My photo")  # Optional caption and other parameters

# Answer with media file
await answer_with_asset(message, "path/to/file.mp4")

Whole Example

import asyncio
from aiogram import Bot, Dispatcher, Router
from aiogram.types import Message
from aiogram.filters import Command

from gram_tools.assets import send_with_asset, answer_with_asset

API_TOKEN = "YOUR_BOT_TOKEN"

bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()

@router.message(Command("photo"))
async def send_photo(message: Message):
    await send_with_asset(
        bot,
        chat_id=message.chat.id,
        file_path="path/to/your/photo.jpg",
        caption="Here is a photo!"
    )

@router.message(Command("video"))
async def send_video(message: Message):
    await answer_with_asset(
        message=message,
        file_path="path/to/your/video.mp4",
        caption="Here is a video!"
    )

async def main():
    dp.include_router(router)
    await dp.start_polling(bot)

if __name__ == "__main__":
    asyncio.run(main())

Supported Media Types:

  • Photos: jpg, jpeg, png, svg, webp, bmp, jfif, heic, heif
  • Videos: mp4, mov, avi, mkv, m4v, 3gp
  • Audio: mp3, wav, flac, m4a, ogg, aac
  • Voice: ogg, opus
  • Animations: gif
  • Documents: Any other file type

CRUD Operations

Generic CRUD operations for SQLAlchemy models.

from gram_tools.crud import get_crud
from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
    __tablename__ = "users"

    id = Column(Integer, primary_key=True, index=True)
    telegram_id = Column(Integer, unique=True, index=True)
    name = Column(String)

user_crud = get_crud(User)

# Add new instance
await user_crud.add(session, user)

# Get instance
user = await user_crud.get(session, id=1)

# Get all instances
active_users = await user_crud.get_all(session, status="active")

# Get count of instances
active_users_count = await user_crud.get_all_count(session, status="active")

# Update instance
await user_crud.update(session, user, name="New Name")

# Delete instance
await user_crud.delete(session, user)

Pagination Keyboards

Create paginated inline keyboards with optional search functionality.

from gram_tools.keyboards.pagination import InlinePageBuilder, SearchButton

# Create pagination with search
builder = InlinePageBuilder(
    per_page=5,
    layout=1,
    search_button=SearchButton("🔍")
)

items = ["Item 1", "Item 2", "Item 3", ...]
keyboard = builder.get_paginated(items, page=1)

# With search
keyboard = builder.get_paginated(items, page=1, search_term="search query")

Customization Options:

  • per_page: Items per page
  • layout: Number of buttons per row
  • next_button_text: Next page button text
  • prev_button_text: Previous page button text
  • page_callback_prefix: Optional callback prefix of core paginator and item selection
  • ignore_callback_prefix: Optional callback prefix on click ignore items
  • not_exist_page: Text for disabled navigation buttons
  • search_button: Optional search button configuration

Whole Example

import asyncio
from aiogram import Bot, Dispatcher, Router
from aiogram.types import CallbackQuery, Message
from aiogram.filters import Command
from aiogram.fsm.context import FSMContext
from aiogram.fsm.state import StatesGroup, State

from gram_tools.keyboards.pagination import InlinePageBuilder, SearchButton

API_TOKEN = "YOUR_BOT_TOKEN"

bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()

items = [f"Item {i}" for i in range(1, 21)]
search_button = SearchButton(button_text="🔍 Search")
inline_builder = InlinePageBuilder(per_page=5, search_button=search_button)

class Form(StatesGroup):
    waiting_for_search_term = State()

@router.message(Command("start"))
async def show_inline_keyboard(message: Message, state: FSMContext):
    await state.clear()
    keyboard = inline_builder.get_paginated(items, page=1)
    await message.answer("Select an item:", reply_markup=keyboard)

@router.callback_query(inline_builder.page_callback.filter())
async def handle_callback(callback: CallbackQuery, callback_data: inline_builder.page_callback, state: FSMContext):
    action = callback_data.action
    value = callback_data.value

    data = await state.get_data()
    search_term = data.get('search_term')

    if action in ("next", "prev"):
        page = value
        keyboard = inline_builder.get_paginated(items, page=page, search_term=search_term)
        await callback.message.edit_reply_markup(reply_markup=keyboard)
        await callback.answer()
    elif action == "sel":
        item_index = value
        if search_term:
            filtered_items = [item for item in items if search_term.lower() in str(item).lower()]
        else:
            filtered_items = items

        if 0 <= item_index < len(filtered_items):
            selected_item = filtered_items[item_index]
            await callback.message.answer(f"You selected: {selected_item}")
        else:
            await callback.message.answer("Element not found.")
        await callback.answer()

@router.callback_query(search_button.search_callback.filter())
async def handle_search_callback(callback: CallbackQuery, state: FSMContext):
    await state.update_data(search_term=None)
    await callback.message.answer("Type text to search:")
    await state.set_state(Form.waiting_for_search_term)
    await callback.answer()

@router.message(Form.waiting_for_search_term)
async def perform_search(message: Message, state: FSMContext):
    search_term = message.text
    await state.update_data(search_term=search_term)
    await state.set_state(None)

    keyboard = inline_builder.get_paginated(items, page=1, search_term=search_term)

    if keyboard.inline_keyboard:
        await message.answer("Results:", reply_markup=keyboard)
    else:
        await message.answer("Nothing found.")

@router.callback_query(inline_builder.ignore_callback.filter())
async def handle_ignore_callback(callback: CallbackQuery):
    await callback.answer()

async def main():
    dp.include_router(router)
    await dp.start_polling(bot)

if __name__ == "__main__":
    asyncio.run(main())

Menu Builder

Create complex nested menus with ease.

from gram_tools.keyboards.menu import InlineMenuBuilder, MenuCallbackData, ActionCallbackData

# Initialize the menu builder
menu_builder = InlineMenuBuilder()

# Define menus and buttons
main_menu_buttons = [
    {'text': '➡ī¸ Go to Submenu 1', 'menu': 'submenu1'},
    {'text': '📋 Option in Main Menu', 'action': 'option_main'},
    {'text': 'ℹī¸ Info', 'action': 'info'},
    {'text': '⚙ī¸ Settings', 'menu': 'settings_menu'}
]

submenu1_buttons = [
    {'text': '📋 Option in Submenu 1', 'action': 'option_sub1'},
    {'text': 'âŦ…ī¸ Back to Main Menu', 'menu': 'main_menu'}
]

settings_menu_buttons = [
    {'text': '🔔 Notifications', 'action': 'notifications'},
    {'text': '🌐 Language', 'action': 'language'},
    {'text': '🔒 Privacy', 'action': 'privacy'},
    {'text': 'âŦ…ī¸ Back to Main Menu', 'menu': 'main_menu'}
]

# Create menus with row sizes
menu_builder.create_menu('main_menu', main_menu_buttons, row_sizes=[2, 2])
menu_builder.create_menu('submenu1', submenu1_buttons, row_sizes=[1, 1])
menu_builder.create_menu('settings_menu', settings_menu_buttons, row_sizes=[2, 1])

# Register action handlers
@router.callback_query(ActionCallbackData.filter())
async def handle_action(callback: CallbackQuery, callback_data: ActionCallbackData):
    action = callback_data.action
    value = callback_data.value
    handler = menu_builder.get_handler(action)
    if handler:
        await handler(callback, value)
    else:
        await callback.message.answer(f"Action '{action}' is not handled.")
    await callback.answer()

@router.callback_query(MenuCallbackData.filter())
async def handle_menu(callback: CallbackQuery, callback_data: MenuCallbackData):
    action = callback_data.action
    menu_name = callback_data.menu_name
    if action in ('open', 'back'):
        markup = menu_builder.get_menu(menu_name)
        if markup:
            await callback.message.edit_reply_markup(reply_markup=markup)
    await callback.answer()

# Action Handlers
async def option_main_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("You selected an option in the Main Menu.")

async def info_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("This is some information about the bot.")

async def notifications_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("Notification settings.")

async def language_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("Language settings.")

async def privacy_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("Privacy settings.")

async def option_sub1_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("You selected an option in Submenu 1.")

# Register the handlers
menu_builder.register_handler('option_main', option_main_handler)
menu_builder.register_handler('info', info_handler)
menu_builder.register_handler('notifications', notifications_handler)
menu_builder.register_handler('language', language_handler)
menu_builder.register_handler('privacy', privacy_handler)
menu_builder.register_handler('option_sub1', option_sub1_handler)

# Start command handler
@router.message(Command("start"))
async def start_cmd(message: Message):
    markup = menu_builder.get_menu('main_menu')
    await message.answer("Welcome to the bot. Choose an option:", reply_markup=markup)

Whole Example

import asyncio
from typing import Optional

from aiogram import Bot, Dispatcher, Router
from aiogram.types import CallbackQuery, Message
from aiogram.filters import Command

from gram_tools.keyboards.menu import InlineMenuBuilder, MenuCallbackData, ActionCallbackData

API_TOKEN = "YOUR_BOT_TOKEN"

bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()

menu_builder = InlineMenuBuilder()

# Define menus and buttons

# Main Menu with buttons per row specified
main_menu_buttons = [
    {'text': '➡ī¸ Go to Submenu 1', 'menu': 'submenu1'},
    {'text': '📋 Option in Main Menu', 'action': 'option_main'},
    {'text': 'ℹī¸ Info', 'action': 'info'},
    {'text': '⚙ī¸ Settings', 'menu': 'settings_menu'}
]

# Submenu 1
submenu1_buttons = [
    {'text': '📋 Option in Submenu 1', 'action': 'option_sub1'},
    {'text': 'âŦ…ī¸ Back to Main Menu', 'menu': 'main_menu'}
]

# Settings Menu with custom row sizes
settings_menu_buttons = [
    {'text': '🔔 Notifications', 'action': 'notifications'},
    {'text': '🌐 Language', 'action': 'language'},
    {'text': '🔒 Privacy', 'action': 'privacy'},
    {'text': 'âŦ…ī¸ Back to Main Menu', 'menu': 'main_menu'}
]

# Create menus with row_sizes
menu_builder.create_menu('main_menu', main_menu_buttons, row_sizes=[2, 2])
menu_builder.create_menu('submenu1', submenu1_buttons, row_sizes=[1, 1])
menu_builder.create_menu('settings_menu', settings_menu_buttons, row_sizes=[2, 1])

# Register action handlers
@router.callback_query(ActionCallbackData.filter())
async def handle_action(callback: CallbackQuery, callback_data: ActionCallbackData):
    action = callback_data.action
    value = callback_data.value
    handler = menu_builder.get_handler(action)
    if handler:
        await handler(callback, value)
    else:
        await callback.message.answer(f"Action '{action}' is not handled.")
    await callback.answer()

@router.callback_query(MenuCallbackData.filter())
async def handle_menu(callback: CallbackQuery, callback_data: MenuCallbackData):
    action = callback_data.action
    menu_name = callback_data.menu_name
    if action in ('open', 'back'):
        markup = menu_builder.get_menu(menu_name)
        if markup:
            await callback.message.edit_reply_markup(reply_markup=markup)
    await callback.answer()

# Action Handlers
async def option_main_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("You selected an option in the Main Menu.")

async def info_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("This is some information about the bot.")

async def notifications_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("Notification settings.")

async def language_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("Language settings.")

async def privacy_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("Privacy settings.")

async def option_sub1_handler(callback: CallbackQuery, value: Optional[str]):
    await callback.message.answer("You selected an option in Submenu 1.")

# Register the handlers
menu_builder.register_handler('option_main', option_main_handler)
menu_builder.register_handler('info', info_handler)
menu_builder.register_handler('notifications', notifications_handler)
menu_builder.register_handler('language', language_handler)
menu_builder.register_handler('privacy', privacy_handler)
menu_builder.register_handler('option_sub1', option_sub1_handler)

# Start command handler
@router.message(Command("start"))
async def start_cmd(message: Message):
    markup = menu_builder.get_menu('main_menu')
    await message.answer("Welcome to the bot. Choose an option:", reply_markup=markup)

async def main():
    dp.include_router(router)
    await dp.start_polling(bot)

if __name__ == "__main__":
    asyncio.run(main())

FSM Visualizer

Easily generate visual diagrams of your Finite State Machines (FSM) defined in your aiogram bot by analyzing your bot's Python code. The visualize_fsm function parses your bot's code to extract handlers, FSM states, and transitions, and generates a visual representation of the FSM using NetworkX and Matplotlib.

How to Use

  1. Import the Visualizer Function

    Add the following import statement to your script:

    from gram_tools.visual import visualize_fsm
  2. Call the Visualizer Function

    Use the visualize_fsm function, providing the path to your Python file containing the FSM definitions:

    visualize_fsm('path/to/your_code.py')

    This will generate an image representing the FSM.

Example

Suppose you have a bot script bot.py with FSM states defined:

# bot.py

from aiogram import Bot, Dispatcher, types, Router
from aiogram.filters import Command
from aiogram.fsm.state import State, StatesGroup
from aiogram.fsm.context import FSMContext

API_TOKEN = "YOUR_BOT_TOKEN"

bot = Bot(token=API_TOKEN)
dp = Dispatcher()
router = Router()

class Registration(StatesGroup):
    waiting_for_name = State()
    waiting_for_email = State()

@router.message(Command('register'))
async def cmd_register(message: types.Message, state: FSMContext):
    await message.answer("What's your name?")
    await state.set_state(Registration.waiting_for_name)

@router.message(Registration.waiting_for_name)
async def process_name(message: types.Message, state: FSMContext):
    await state.update_data(name=message.text)
    await message.answer("What's your email?")
    await state.set_state(Registration.waiting_for_email)

@router.message(Registration.waiting_for_email)
async def process_email(message: types.Message, state: FSMContext):
    user_data = await state.get_data()
    await message.answer(f"Registration complete! Name: {user_data['name']}, Email: {message.text}")
    await state.clear()

To visualize the FSM, create a separate script

from gram_tools.visual import visualize_fsm

visualize_fsm('bot.py')

Run this script:

python visualize.py

This will generate an image representing the FSM in your bot.py:

FSM Diagram

Additional Information

  • The visualize_fsm function parses your Python code to extract FSM states and transitions.
  • It supports aiogram's FSM implementations using StatesGroup and State.
  • The generated diagram can help in understanding and debugging the flow of states in your bot.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.