jointtsmodel

jointtsmodel - library of joint topic-sentiment models


Keywords
information-extraction, joint-topic-sentiment-models, latent-dirichlet-allocation, natural-language-processing, sentiment-analysis, topic-modeling
License
MIT
Install
pip install jointtsmodel==1.6

Documentation

jointtsmodel

License

This is a consolidated library for joint topic-sentiment (jst) models.

Description

Joint topic-sentiment models extract topical as well as sentiment information for each text. This library contains different jst models - JST, RJST, TSM, sLDA and TSWE.

Installation

git clone https://github.com/victor7246/jointtsmodel.git
cd jointtsmodel
python setup.py install

Or from pip:

pip install jointtsmodel

Usage

We can use vectorized texts to run joint topic-sentiment models.

from jointtsmodel.RJST import RJST
from jointtsmodel.JST import JST
from jointtsmodel.sLDA import sLDA
from jointtsmodel.TSM import TSM
from jointtsmodel.TSWE import TSWE

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import fetch_20newsgroups
from jointtsmodel.utils import *

# This produces a feature matrix of token counts, similar to what
# CountVectorizer would produce on text.
data, _ = fetch_20newsgroups(shuffle=True, random_state=1,
                         remove=('headers', 'footers', 'quotes'),
                         return_X_y=True)
data = data[:1000]
vectorizer = CountVectorizer(max_df=0.7, min_df=10,
                            max_features=5000,
                            stop_words='english')
X = vectorizer.fit_transform(data)
vocabulary = vectorizer.get_feature_names()
inv_vocabulary = dict(zip(vocabulary,np.arange(len(vocabulary))))
lexicon_data = pd.read_excel('lexicon/prior_sentiment.xlsx')
lexicon_data = lexicon_data.dropna()
lexicon_dict = dict(zip(lexicon_data['Word'],lexicon_data['Sentiment']))

For JST model use

model = JST(n_topic_components=5,n_sentiment_components=5,random_state=123,evaluate_every=2)
model.fit(X.toarray(), lexicon_dict)

model.transform()[:2]

top_words = list(model.getTopKWords(vocabulary).values())
coherence_score_uci(X.toarray(),inv_vocabulary,top_words)
Hscore(model.transform())

For RJST model use

model = RJST(n_topic_components=5,n_sentiment_components=5,random_state=123,evaluate_every=2)
model.fit(X.toarray(), lexicon_dict)

model.transform()[:2]

top_words = list(model.getTopKWords(vocabulary).values())
coherence_score_uci(X.toarray(),inv_vocabulary,top_words)
Hscore(model.transform())

For TSM use

model = TSM(n_topic_components=5,n_sentiment_components=5,random_state=123,evaluate_every=2)
model.fit(X.toarray(), lexicon_dict)

model.transform()[:2]

top_words = list(model.getTopKWords(vocabulary).values())
coherence_score_uci(X.toarray(),inv_vocabulary,top_words)
Hscore(model.transform())

For sLDA model use

model = sLDA(n_topic_components=5,n_sentiment_components=5,random_state=123,evaluate_every=2)
model.fit(X.toarray(), vocabulary)

model.transform()[:2]

top_words = list(model.getTopKWords(vocabulary).values())
coherence_score_uci(X.toarray(),inv_vocabulary,top_words)
Hscore(model.transform())

For TSWE model we need word embedding matrix as an input.

embeddings_index = {}
f = open('embeddings/glove.6B.100d.txt','r',encoding='utf8')

for i, line in enumerate(f):
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    embeddings_index[word] = coefs
f.close()

print('Found %s word vectors.' % len(embeddings_index))

embedding_matrix = np.zeros((X.shape[1], 100))

for i, word in enumerate(vocabulary):
    if word in embeddings_index:
        embedding_matrix[i] = embeddings_index[word]
    else:
        embedding_matrix[i] = np.zeros(100)

Run TSWE model

model = TSWE(embedding_dim=100,n_topic_components=5,n_sentiment_components=5,random_state=123,evaluate_every=2)
model.fit(X.toarray(), lexicon_dict, embedding_matrix)

model.transform()[:2]

top_words = list(model.getTopKWords(vocabulary).values())
coherence_score_uci(X.toarray(),inv_vocabulary,top_words)
Hscore(model.transform())

To do

  • Add parallelization for faster execution
  • Handle sparse matrix
  • Add online JST models

References -

[1] https://www.researchgate.net/figure/JST-and-Reverse-JST-sentiment-classification-results-with-multiple-topics_fig1_47454505

[2] https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1913/2215

[3] https://hal.archives-ouvertes.fr/hal-02052354/document

[4] https://github.com/ayushjain91/Sentiment-LDA

[5] https://gist.github.com/mblondel/542786

[6] http://ceur-ws.org/Vol-1646/paper6.pdf