# Noise reduction in python using spectral gating

- This algorithm is based (but not completely reproducing) on the one outlined by Audacity for the
**noise reduction effect**(Link to C++ code) - The algorithm requires two inputs:
- A
*noise*audio clip comtaining prototypical noise of the audio clip - A
*signal*audio clip containing the signal and the noise intended to be removed

- A

## Steps of algorithm

- An FFT is calculated over the noise audio clip
- Statistics are calculated over FFT of the the noise (in frequency)
- A threshold is calculated based upon the statistics of the noise (and the desired sensitivity of the algorithm)
- An FFT is calculated over the signal
- A mask is determined by comparing the signal FFT to the threshold
- The mask is smoothed with a filter over frequency and time
- The mask is appled to the FFT of the signal, and is inverted

## Installation

`pip install noisereduce`

*noisereduce optionally uses Tensorflow as a backend to speed up FFT and gaussian convolution. It is not listed in the requirements.txt so because (1) it is optional and (2) tensorflow-gpu and tensorflow (cpu) are both compatible with this package. The package requires Tensorflow 2+ for all tensorflow operations.*

## Usage

```
import noisereduce as nr
# load data
rate, data = wavfile.read("mywav.wav")
# select section of data that is noise
noisy_part = data[10000:15000]
# perform noise reduction
reduced_noise = nr.reduce_noise(audio_clip=data, noise_clip=noisy_part, verbose=True)
```

###
`noise_reduce`

Arguments to ```
n_grad_freq (int): how many frequency channels to smooth over with the mask.
n_grad_time (int): how many time channels to smooth over with the mask.
n_fft (int): number audio of frames between STFT columns.
win_length (int): Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`..
hop_length (int):number audio of frames between STFT columns.
n_std_thresh (int): how many standard deviations louder than the mean dB of the noise (at each frequency level) to be considered signal
prop_decrease (float): To what extent should you decrease noise (1 = all, 0 = none)
pad_clipping (bool): Pad the signals with zeros to ensure that the reconstructed data is equal length to the data
use_tensorflow (bool): Use tensorflow as a backend for convolution and fft to speed up computation
verbose (bool): Whether to plot the steps of the algorithm
```

Project based on the cookiecutter data science project template. #cookiecutterdatascience