pybrms

Pythonic interface to the brms R package


Keywords
bayesian, regression, models, rpy2, brms
License
Apache-2.0
Install
pip install pybrms==0.0.33

Documentation

pybrms

a pythonic interface for R's brms

brms is a fantastic R package that allows users to fit many kinds of Bayesian regression models - linear models, GLMs, survival analysis, etc - all in a multilevel context. Models are concisely specified using R's formula syntax, and the corresponding Stan program and data are automatically generated.

pybrms aims to bring the ease-of-use of brms to python users; more sampling, less index-gymnastics and shape errors.

Install

Install via pip:

pip install pybrms

This installs the python package along with its pythonic dependencies; when you first call pybrms, it'll install brms and its dependencies. Don't worry if you don't have R or brms installed - they will be installed in your current virtual environment.

Example

Let's use pybrms to fit a poisson regression model, including an interaction term and by-patient varying intercept. pybrms can import all datasets that are included in brms:

epilepsy = pybrms.get_brms_data("epilepsy")

Fitting the model is as simple as it is in brms:

model = pybrms.fit(
    formula = "count ~ zAge + zBase * Trt + (1 | patient)",
    data = epilepsy, 
    family = "poisson"
)
INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_6f531b7e8a9bc73464e98930b52f4547 NOW.

The user can also specify a list of priors, a family argument (is it a gaussian regression, binomial, poisson, etc), and optional pystan arguments like the number of chains, samples, etc.

When sampling is completed, fit returns a pystan StanFit4Model object. The generated stan code is also available:

model.get_stanmodel().show()
StanModel object 'anon_model_6f531b7e8a9bc73464e98930b52f4547' coded as follows:
// generated with brms 2.10.5
functions {
}
data {
  int<lower=1> N;  // number of observations
  int Y[N];  // response variable
  int<lower=1> K;  // number of population-level effects
  matrix[N, K] X;  // population-level design matrix
  // data for group-level effects of ID 1
  int<lower=1> N_1;  // number of grouping levels
  int<lower=1> M_1;  // number of coefficients per level
  int<lower=1> J_1[N];  // grouping indicator per observation
  // group-level predictor values
  vector[N] Z_1_1;
  int prior_only;  // should the likelihood be ignored?
}
transformed data {
  int Kc = K - 1;
  matrix[N, Kc] Xc;  // centered version of X without an intercept
  vector[Kc] means_X;  // column means of X before centering
  for (i in 2:K) {
    means_X[i - 1] = mean(X[, i]);
    Xc[, i - 1] = X[, i] - means_X[i - 1];
  }
}
parameters {
  vector[Kc] b;  // population-level effects
  // temporary intercept for centered predictors
  real Intercept;
  vector<lower=0>[M_1] sd_1;  // group-level standard deviations
  // standardized group-level effects
  vector[N_1] z_1[M_1];
}
transformed parameters {
  // actual group-level effects
  vector[N_1] r_1_1 = (sd_1[1] * (z_1[1]));
}
model {
  // initialize linear predictor term
  vector[N] mu = Intercept + Xc * b;
  for (n in 1:N) {
    // add more terms to the linear predictor
    mu[n] += r_1_1[J_1[n]] * Z_1_1[n];
  }
  // priors including all constants
  target += student_t_lpdf(Intercept | 3, 1, 10);
  target += student_t_lpdf(sd_1 | 3, 0, 10)
    - 1 * student_t_lccdf(0 | 3, 0, 10);
  target += normal_lpdf(z_1[1] | 0, 1);
  // likelihood including all constants
  if (!prior_only) {
    target += poisson_log_lpmf(Y | mu);
  }
}
generated quantities {
  // actual population-level intercept
  real b_Intercept = Intercept - dot_product(means_X, b);
}

How it works

Behind the scene, pybrms calls brms via rpy2, handling the python-to-R-objects transitions in both directions and making sure that Stan gets the dtypes it expects by parsing the model's data block.

More specifically, pybrms calls two brms functions: make_stancode and make_standata, which are used to generate the appropriate model code, design matrices, etc. These are then "pulled back" to python and fed into pystan.

Adding priors

By defaults, brms uses non- or weakly-informative priors on model parameters. You can specify more informative priors using the following syntax:

model = pybrms.fit("count ~ zAge + zBase * Trt + (1|patient) + (1|obs)",
                                           data = epilepsy, family = "poisson",
                                           priors = [("student_t(5,0,10)", "b"),
                                                     ("cauchy(0,2)", "sd")]
                                          )
INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_3b2730a3196dc4b804b959d98397ba09 NOW.

Priors are passed as a list of tuples that conform to brms set_prior order of arguments - the first element is a Stan distribution, second is the class (b, Intercept, sd), third is coef, etc.

Error handling

Error handling happens at the rpy2 level, which catches the (R) error and displays it as a python RRuntimeError exception:

model = pybrms.fit("count_typo ~ zAge + zBase * Trt + (1|patient) + (1|obs)",
                                           data = epilepsy, family = "poisson",
                                           priors = [("student_t(5,0,10)", "b"),
                                                     ("cauchy(0,2)", "sd")]
                                          )
WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Error: The following variables are missing in 'data':
'count_typo'




---------------------------------------------------------------------------

RRuntimeError                             Traceback (most recent call last)

<ipython-input-6-3103bec4b060> in <module>
      2                                            data = epilepsy, family = "poisson",
      3                                            priors = [("student_t(5,0,10)", "b"),
----> 4                                                      ("cauchy(0,2)", "sd")]
      5                                           )


~/projects/pybrms/pybrms/pybrms.py in fit(formula, data, priors, family, sample_prior, sample, **pystan_args)
    128         family=family,
    129         priors=brms_prior,
--> 130         sample_prior=sample_prior,
    131     )
    132     model_data = _convert_R_to_python(formula, data, family)


~/projects/pybrms/pybrms/pybrms.py in get_stan_code(formula, data, priors, family, sample_prior)
     54     if len(priors)>0:
     55         return brms.make_stancode(
---> 56             formula=formula, data=data, prior=priors, family=family, sample_prior=sample_prior
     57         )[0]
     58     else:


~/miniconda3/envs/rpy/lib/python3.6/site-packages/rpy2/robjects/functions.py in __call__(self, *args, **kwargs)
    190                 kwargs[r_k] = v
    191         return (super(SignatureTranslatedFunction, self)
--> 192                 .__call__(*args, **kwargs))
    193 
    194 


~/miniconda3/envs/rpy/lib/python3.6/site-packages/rpy2/robjects/functions.py in __call__(self, *args, **kwargs)
    119             else:
    120                 new_kwargs[k] = conversion.py2rpy(v)
--> 121         res = super(Function, self).__call__(*new_args, **new_kwargs)
    122         res = conversion.rpy2py(res)
    123         return res


~/miniconda3/envs/rpy/lib/python3.6/site-packages/rpy2/rinterface_lib/conversion.py in _(*args, **kwargs)
     26 def _cdata_res_to_rinterface(function):
     27     def _(*args, **kwargs):
---> 28         cdata = function(*args, **kwargs)
     29         # TODO: test cdata is of the expected CType
     30         return _cdata_to_rinterface(cdata)


~/miniconda3/envs/rpy/lib/python3.6/site-packages/rpy2/rinterface.py in __call__(self, *args, **kwargs)
    783                     error_occured))
    784             if error_occured[0]:
--> 785                 raise embedded.RRuntimeError(_rinterface._geterrmessage())
    786         return res
    787 


RRuntimeError: Error: The following variables are missing in 'data':
'count_typo'

This makes sure you can debug your data/formula/etc without actually leaving python.

Visualization

Since pybrms returns a pystan object, we can easily visualize the results using arviz:

import arviz as az
inference_data = az.from_pystan(model)
az.plot_posterior(inference_data, var_names=['b', 'Intercept']);

png

For a more detailed walkthrough, see the accompanying blog post.