Encog is a NodeJs ES6 framework based on the Encog Machine Learning Framework by Jeff Heaton, plus some the of basic data manipulation helpers.


Keywords
encog, machine, learning, machine learning, data manipulation, neural, network, neural network, artificial neural network, artificial, intelligence, artificial intelligence, back propagation, manhattan propagation, resilient propagation, levenberg marquardt, neural simulated annealing, adaline neural network, elman neural network, feed forward neural network, perceptron, jordan neural network, hopfield network, bidirectional associative memory network, freeform networks, Stochastic Gradient Descent, AdaGrad, Adam, Momentum, Nesterov, RmsProp, back-propagation, machine-learning, neural-networks, resilient-propagation
License
Apache-2.0
Install
npm install encog@1.6.0

Documentation

encog

https://www.npmjs.com/package/encog

Encog is a NodeJs ES6 framework based on the Encog Machine Learning Framework by Jeff Heaton.

All credits of the framework should go to Jeff Heaton - http://www.heatonresearch.com/encog/

Based on the encog-java-core v3.4 - https://github.com/encog/encog-java-core

Full documentation and source code - https://github.com/redsoul/encog

Build Status

Installation

npm install encog --save

Usage

Just require the library and all of Encog namespace will be available to you:

const Encog = require('encog');

Unit Tests

npm install --only=dev
npm test

Implemented algorithms

  • Networks
    • Basic Network
    • Hopfield Network
    • BAM (Bidirectional associative memory) Network
    • Freeform Network
  • Training
    • Back Propagation
    • Manhattan Propagation
    • Resilient Propagation
    • Stochastic Gradient Descent
      • Momentum
      • Nesterov
      • RMS Prop
      • AdaGrad
      • Adam
    • Levenberg Marquardt
    • Neural Simulated Annealing
  • Patterns
    • ADALINE
    • Feed Forward (Perceptron)
    • Elman Network
    • Jordan Network
    • Hopfield Network
    • BAM Network
  • Activation Functions
    • Elliott
    • Symmetric Elliott
    • Gaussian
    • Linear
    • Ramp
    • ReLu
    • Sigmoid
    • Softmax
    • Steepened Sigmoid
    • Hyperbolic tangent
  • Error Functions
    • Arctangent
    • Cross Entropy
    • Linear
    • Output

Examples

Back Propagation example using XOR Data Set

const Encog = require('encog');
const XORdataset = Encog.Utils.Datasets.getXORDataSet();

//adjust the log level
Encog.Log.options.logLevel = 'info';

// create a neural network
const network = new Encog.Networks.Basic();
network.addLayer(new Encog.Layers.Basic(null, true, 2));
network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), true, 4));
network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), false, 1));
network.randomize();

const train = new Encog.Training.Propagation.Back(network, XORdataset.input, XORdataset.output);

Encog.Utils.Network.trainNetwork(train, {maxIterations: 250});
const accuracy = Encog.Utils.Network.validateNetwork(network, XORdataset.input, XORdataset.output);
console.log('Accuracy:', accuracy);

Resilient Propagation example using Iris Flower Data Set (https://en.wikipedia.org/wiki/Iris_flower_data_set)

const Encog = require('encog');
const _ = require('lodash');

//adjust the log level
Encog.Log.options.logLevel = 'info';

const dataEncoder = new Encog.Preprocessing.DataEncoder();
let irisDataset = Encog.Utils.Datasets.getIrisDataSet();
irisDataset = _.shuffle(irisDataset);
irisDataset = Encog.Preprocessing.DataToolbox.trainTestSplit(irisDataset);

/******************/
//data normalization
/******************/

//apply a specific mapping to each column
const mappings = {
    'Sepal.Length': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
    'Sepal.Width': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
    'Petal.Length': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
    'Petal.Width': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
    'Species': new Encog.Preprocessing.DataMappers.OneHot(),
};

//Fit to data, then transform it.
let trainData = dataEncoder.fit_transform(irisDataset.train, mappings);
//transform the test data based on the train data
let testData = dataEncoder.transform(irisDataset.test, mappings);

//slice the data in input and output
trainData = Encog.Preprocessing.DataToolbox.sliceOutput(trainData.values, 3);
testData = Encog.Preprocessing.DataToolbox.sliceOutput(testData.values, 3);

// create a neural network
const network = new Encog.Networks.Basic();
network.addLayer(new Encog.Layers.Basic(null, true, 4));
network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), true, 10));
network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), true, 5));
network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), false, 3));
network.randomize();

// train the neural network
const train = new Encog.Training.Propagation.Resilient(network, trainData.input, trainData.output);
Encog.Utils.Network.trainNetwork(train, {minError: 0.01, minIterations: 5});

//validate the neural network
let accuracy = Encog.Utils.Network.validateNetwork(network, testData.input, testData.output);
console.log('Accuracy:', accuracy);

//save the trained network
Encog.Utils.File.saveNetwork(network, 'iris.dat');

//load a pretrained network
const newNetwork = Encog.Utils.File.loadNetwork('iris.dat');

//validate the neural network
accuracy = Encog.Utils.Network.validateNetwork(newNetwork, testData.input, testData.output);
console.log('accuracy: ', accuracy);

Stochastic Gradient Descent with Adam update example using the bank note authentication dataset

const Encog = require('encog');
const _ = require('lodash');
const dataEncoder = new Encog.Preprocessing.DataEncoder();

//adjust the log level
Encog.Log.options.logLevel = 'info';

(async () => {
    const dataset = await Encog.Preprocessing.DataToolbox.readTrainingCSV(
        './node_modules/encog/examples/data/data_banknote_authentication.csv'
    );
    const shuffledDataset = _.shuffle(dataset);

    const splittedDataset = Encog.Preprocessing.DataToolbox.trainTestSplit(shuffledDataset);

    /******************/
    //data normalization
    /******************/
    //apply a specific mapping to each column
    const mappings = {
        'variance': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
        'skewness': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
        'curtosis': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
        'entropy': new Encog.Preprocessing.DataMappers.MinMaxScaller(),
        'class': new Encog.Preprocessing.DataMappers.IntegerParser()
    };
    //Fit to data, then transform it.
    let trainData = dataEncoder.fit_transform(splittedDataset.train, mappings);
    //transform the test data based on the train data
    let testData = dataEncoder.transform(splittedDataset.test, mappings);

    //slice the data in input and output
    trainData = Encog.Preprocessing.DataToolbox.sliceOutput(trainData.values, 1);
    testData = Encog.Preprocessing.DataToolbox.sliceOutput(testData.values, 1);

    // create a neural network
    const network = new Encog.Networks.Basic();
    network.addLayer(new Encog.Layers.Basic(null, true, 4));
    network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), true, 40));
    network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), true, 40));
    network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), true, 40));
    network.addLayer(new Encog.Layers.Basic(new Encog.ActivationFunctions.Sigmoid(), false, 1));
    network.randomize();

    // train the neural network
    const train = new Encog.Training.SGD.StochasticGradientDescent(network, trainData.input, trainData.output, new Encog.Training.SGD.Update.Adam());
    Encog.Utils.Network.trainNetwork(train, {minError: 0.01, minIterations: 50, maxIterations: 200});

    //validate the neural network
    let accuracy = Encog.Utils.Network.validateNetwork(network, testData.input, testData.output);
    console.log('Accuracy:', accuracy);

    //save the trained network
    Encog.Utils.File.saveNetwork(network, 'banknote_authentication.dat');

    //load a pretrained network
    const newNetwork = Encog.Utils.File.loadNetwork('banknote_authentication.dat');

    //validate the neural network
    accuracy = Encog.Utils.Network.validateNetwork(newNetwork, testData.input, testData.output);
    console.log('accuracy: ', accuracy);
})();

Hopfield Network example custom binary dataset

const Encog = require('encog');
const _ = require('lodash');
const hopfieldPatterns = Encog.Utils.Datasets.getHopfieldPatterns();
const HopfieldPattern = new Encog.Patterns.Hopfield();

//adjust the log level
Encog.Log.options.logLevel = 'info';

HopfieldPattern.setInputLayer(35);
const network = HopfieldPattern.generate();

_.each(hopfieldPatterns, function (pattern) {
    network.addPattern(pattern);
});

network.runUntilStable(10);
const input = [
    0, 0, 0, 0, 0,
    0, 1, 1, 1, 0,
    0, 0, 0, 0, 0,
    0, 1, 1, 0, 0,
    0, 0, 0, 0, 0,
    0, 1, 1, 1, 0,
    0, 0, 0, 0, 0
];
const result = network.compute(input);
console.log('Result:', result);

/*
Output:

0, 0, 0, 0, 0,
0, 1, 1, 1, 0,
0, 1, 0, 0, 0,
0, 1, 1, 0, 0,
0, 1, 0, 0, 0,
0, 1, 1, 1, 0,
0, 0, 0, 0, 0
*/

Node.js version compatibility

8.0.0 or higher