DeepSurrogatepin

Deep surrogate model for the probability of informed trading model


Keywords
Machine, learning, market, microstructure
License
MIT
Install
pip install DeepSurrogatepin==0.11

Documentation

Master thesis: Deep Structural estimation: with an application to market microstructure modelling

This package proposes an easy application of the master thesis: "Deep Structural estimation: with an application to market microstructure modelling"

alt text

Installation

pip install -i https://test.pypi.org/simple/ DeepSurrogate-pin

link of the pypl library: https://test.pypi.org/project/DeepSurrogate-pin/

Authors

Supervisors

Deep surrogate (architecture)

Hyparameter Value
architecture [400,400,200,100]
activation function Swish
optimizer ADAM
loss function MSE
learning rate 0.5e-3
# of epoch 15

Instruction

  1. Clone project
git clone https://github.com/GuillaumePv/pin_surrogate_model.git
  1. Go into project folder
cd pin_surrogate_model
  1. Create your virtual environment (optional)
python3 -m venv venv
  1. Enter in your virtual environment (optional)
  • Mac OS / linux
source venv/bin/activate venv venv
  • Windows
.\venv\Scripts\activate
  1. Install libraries
  • Python 3
pip3 install -r requirements.txt

Parameter range

Surrogate model are defined inside some specific range of parameter. PIN model in this surrogate library have been trained inside the range defined the table below. The surroate can not estimate PIN probability with parameters outside of this range of parameters.

Parameter Min Max
a 0 0.99
δ 0 0.99
μ 100 300
ε_buy 100 300
ε_sell 100 300
# of buy trades 55 700
# of sell trades 55 700

Demo

  • To see demo of inverse modelling: see estimate_par_lbfgs.py
  • to see how to determine the PIN value: demo.ipynb