Distributed Data Parallel Wrapper (DDPW) is a lightweight Python wrapper relevant to PyTorch users.
DDPW handles basic logistical tasks such as creating threads on GPUs/SLURM nodes, setting up inter-process communication, etc., and provides simple, default utility methods to move modules to devices and get dataset samplers, allowing the user to focus on the main aspects of the task. It is written in Python 3.13. The documentation contains details on how to use this package.
# with uv
# to instal and add to pyroject.toml
uv add [--active] ddpw
# or to simply instal
uv pip install ddpw
# with pip
pip install ddpw
from ddpw import Platform, wrapper
platform = Platform(device="gpu", n_cpus=32, ram=64, n_gpus=4, verbose=True)
@wrapper(platform)
def run(*args, **kwargs):
# global and local ranks, and the process group in:
# kwargs['global_rank'], # kwargs['local_rank'], kwargs['group']
pass
if __name__ == '__main__':
run(*args, **kwargs)
from ddpw import Platform, Wrapper
# some task
def run(*args, **kwargs):
# global and local ranks, and the process group in:
# kwargs['global_rank'], # kwargs['local_rank'], kwargs['group']
pass
if __name__ == '__main__':
# platform (e.g., 4 GPUs)
platform = Platform(device='gpu', n_gpus=4)
# wrapper
wrapper = Wrapper(platform=platform)
# start
wrapper.start(task, *args, **kwargs)