smart-tsp-benchmark

Smart TSP Benchmark is a professional algorithm testing infrastructure with customizable scenarios and detailed metrics.


Keywords
python-tsp, python-tsp-benchmark, smart-tsp-benchmark, smartlegionlab, tsp, tsp-benchmark, tsp-problem, tsp-solver, tsp-solver-python
License
Other
Install
pip install smart-tsp-benchmark==0.2.1

Documentation

Smart TSP Benchmark v0.2.1


⚡ Smart TSP Benchmark is a professional algorithm testing infrastructure with customizable scenarios and detailed metrics.


GitHub top language GitHub release (latest by date) GitHub GitHub Repo stars GitHub watchers GitHub forks PyPI - Downloads PyPI PyPI - Format


Install

pip install smart-tsp-solver

Example

Launch using Smart TSP Solver

pip install smart-tsp-solver

from smart_tsp_benchmark.tsp_benchmark import TSPBenchmark, AlgorithmConfig

from smart_tsp_solver import hierarchical_tsp_solver_v2
from smart_tsp_solver.algorithms.angular_radial.v1 import angular_radial_tsp_v1
from smart_tsp_solver.algorithms.angular_radial.v2 import angular_radial_tsp_v2
from smart_tsp_solver.algorithms.dynamic_gravity.v1 import dynamic_gravity_tsp_v1
from smart_tsp_solver.algorithms.dynamic_gravity.v2 import dynamic_gravity_tsp_v2
from smart_tsp_solver.algorithms.other.greedy.v2 import greedy_tsp_v2


def main():
    config = {
        'n_points': 100,
        'seed': 123,
        'point_generation': 'random',
        'use_post_optimization': False,
        'plot_results': True,
        'verbose': True
    }
    benchmark = TSPBenchmark(config=config)
    benchmark.add_algorithm(
        name='Angular-radial v1',
        config=AlgorithmConfig(
            function=angular_radial_tsp_v1,
            params={
                "sort_by": "angle_distance",
                "look_ahead": 100,
                "max_2opt_iter": 100
            },
            post_optimize=True,
            description="Angular-radial v1",
            is_class=False
        )
    )
    benchmark.add_algorithm(
        name='Angular-radial v2',
        config=AlgorithmConfig(
            function=angular_radial_tsp_v2,
            params={
                "sort_by": "angle_distance",
                "look_ahead": 100,
                "max_2opt_iter": 100
            },
            post_optimize=True,
            description="Angular-radial v2",
            is_class=False
        )
    )
    benchmark.add_algorithm(
        name='Dynamic-gravity v1',
        config=AlgorithmConfig(
            function=dynamic_gravity_tsp_v1,
            params={
                "delta": 0.5,
                "fast_2opt_iter": 100
            },
            post_optimize=True,
            description="Dynamic-gravity v1",
            is_class=False
        )
    )
    benchmark.add_algorithm(
        name='Dynamic-gravity v2',
        config=AlgorithmConfig(
            function=dynamic_gravity_tsp_v2,
            params={
                "delta": 0.5,
                "fast_2opt_iter": 100
            },
            post_optimize=True,
            description="Dynamic-gravity v2",
            is_class=False
        )
    )
    benchmark.add_algorithm(
        name='Greedy v2',
        config=AlgorithmConfig(
            function=greedy_tsp_v2,
            params={},
            post_optimize=False,
            description="Classic greedy TSP algorithm",
            is_class=False,
        )
    )
    benchmark.add_algorithm(
        name='Hierarchical TSP',
        config=AlgorithmConfig(
            function=hierarchical_tsp_solver_v2,
            params={
                "cluster_size": 100,
                "post_optimize": True
            },
            post_optimize=False,
            description="Hierarchical clustering TSP solver",
            is_class=False
        )
    )
    benchmark.run_benchmark()


if __name__ == '__main__':
    main()

An example of testing TSP algorithms here

👨‍💻 Author

A.A. Suvorov

  • Researcher specializing in computational optimization and high-performance algorithms
  • Focused on bridging theoretical computer science with practical engineering applications
  • This project represents extensive research into spatial optimization techniques

Explore other projects on GitHub.

📜 Licensing

This project is offered under a dual-licensing model.

🆓 Option 1: BSD 3-Clause License (for Non-Commercial Use)

This license is free of charge and allows you to use the software for:

  • Personal and educational purposes
  • Academic research and open-source projects
  • Evaluation and testing

Important: Any use by a commercial organization or for commercial purposes (including internal development and prototyping) requires a commercial license.

💼 Option 2: Commercial License (for Commercial Use)

A commercial license is required for:

  • Integrating this software into proprietary products
  • Using it in internal operations within a company
  • SaaS and hosted services that incorporate this software
  • Obtaining priority support and indemnification

To obtain a commercial license, please contact us directly at:
📧 smartlegiondev@gmail.com

🔗 Related Research

For those interested in the theoretical foundations:

  • smart-tsp-solver - My Python library featuring advanced heuristics (Dynamic Gravity, Angular Radial) for solving large TSP instances where finding the exact optimum is impractical.
  • Exact TSP Solutions (TSP ORACLE): exact-tsp-solver - Optimal solutions for small instances
  • Spatial Optimization: Computational geometry approaches for large-scale problems
  • Heuristic Analysis: Comparative study of modern TSP approaches

🎨 Advanced Visualization

LOGO LOGO Visual analysis showing Angular-radial's optimal sector-based routing, Dynamic-gravity's smooth trajectories, Greedy's suboptimal clustering


📊 Sample Output

==================================================
          SMART TSP ALGORITHMS BENCHMARK          
==================================================
Cities:         100
Seed:           123
Generation:     cluster
Post-opt:       OFF
Algorithms:    
  - Angular-radial v1: sort_by=angle_distance, look_ahead=1001, max_2opt_iter=1001
  - Angular-radial v2: sort_by=angle_distance, look_ahead=1000, max_2opt_iter=1001
  - Dynamic-gravity v1: delta=0.5, fast_2opt_iter=1001
  - Dynamic-gravity v2: delta=0.5, fast_2opt_iter=1001
  - Greedy v2: start_point=0
==================================================


==================================================
Running Angular-radial v1 algorithm...
Description: Angular-radial v1
Parameters: sort_by=angle_distance, look_ahead=1001, max_2opt_iter=1001
Completed in 0.0842 seconds
Route length: 553.66
==================================================

==================================================
Running Angular-radial v2 algorithm...
Description: Angular-radial v2
Parameters: sort_by=angle_distance, look_ahead=1000, max_2opt_iter=1001
Completed in 0.0088 seconds
Route length: 553.66
==================================================

==================================================
Running Dynamic-gravity v1 algorithm...
Description: Dynamic gravity v1
Parameters: delta=0.5, fast_2opt_iter=1001
Completed in 0.0075 seconds
Route length: 567.00
==================================================

==================================================
Running Dynamic-gravity v2 algorithm...
Description: Dynamic gravity v2
Parameters: delta=0.5, fast_2opt_iter=1001
Completed in 0.0073 seconds
Route length: 534.90
==================================================

==================================================
Running Greedy v2 algorithm...
Description: Classic greedy TSP algorithm
Parameters: start_point=0
Completed in 0.0016 seconds
Route length: 609.21
==================================================

==============================================================================================================================
                                                DETAILED ALGORITHM COMPARISON                                                 
==============================================================================================================================
Algorithm            | Time (s) |  vs Best  | Length | vs Best | Params                                                       
------------------------------------------------------------------------------------------------------------------------------
Greedy v2            | 0.0016 | BEST | 609.21 | +13.89% | start_point=0                                                
Dynamic-gravity v2   | 0.0073 | +348.65%  | 534.90 | BEST | delta=0.5, fast_2opt_iter=1001                               
Dynamic-gravity v1   | 0.0075 | +361.28%  | 567.00 | +6.00%  | delta=0.5, fast_2opt_iter=1001                               
Angular-radial v2    | 0.0088 | +441.26%  | 553.66 | +3.51%  | sort_by=angle_distance, look_ahead=1000, max_2opt_iter=1001  
Angular-radial v1    | 0.0842 | +5064.72% | 553.66 | +3.51%  | sort_by=angle_distance, look_ahead=1001, max_2opt_iter=1001  
==============================================================================================================================

PERFORMANCE ANALYSIS:
- Fastest algorithm(s): Greedy v2 (0.0016 sec)
- Shortest route(s): Dynamic-gravity v2 (534.90 units)
==================================================
          SMART TSP ALGORITHMS BENCHMARK          
==================================================
Cities:         1001
Seed:           0
Generation:     cluster
Post-opt:       OFF
Algorithms:    
  - Angular-radial v1: sort_by=angle_distance, look_ahead=1001, max_2opt_iter=1001
  - Angular-radial v2: sort_by=angle_distance, look_ahead=1000, max_2opt_iter=1001
  - Dynamic-gravity v1: delta=0.5, fast_2opt_iter=1001
  - Dynamic-gravity v2: delta=0.5, fast_2opt_iter=1001
  - Greedy v2: start_point=0
==================================================


==================================================
Running Angular-radial v1 algorithm...
Description: Angular-radial v1
Parameters: sort_by=angle_distance, look_ahead=1001, max_2opt_iter=1001
Completed in 0.2531 seconds
Route length: 1388.82
==================================================

==================================================
Running Angular-radial v2 algorithm...
Description: Angular-radial v2
Parameters: sort_by=angle_distance, look_ahead=1000, max_2opt_iter=1001
Completed in 0.1263 seconds
Route length: 1388.82
==================================================

==================================================
Running Dynamic-gravity v1 algorithm...
Description: Dynamic gravity v1
Parameters: delta=0.5, fast_2opt_iter=1001
Completed in 0.0279 seconds
Route length: 1486.12
==================================================

==================================================
Running Dynamic-gravity v2 algorithm...
Description: Dynamic gravity v2
Parameters: delta=0.5, fast_2opt_iter=1001
Completed in 0.0248 seconds
Route length: 1485.03
==================================================

==================================================
Running Greedy v2 algorithm...
Description: Classic greedy TSP algorithm
Parameters: start_point=0
Completed in 0.0022 seconds
Route length: 1612.74
==================================================

================================================================================================================================
                                                 DETAILED ALGORITHM COMPARISON                                                  
================================================================================================================================
Algorithm            | Time (s) |  vs Best   |  Length | vs Best | Params                                                       
--------------------------------------------------------------------------------------------------------------------------------
Greedy v2            | 0.0022 | BEST | 1612.74 | +16.12% | start_point=0                                                
Dynamic-gravity v2   | 0.0248 | +1016.15%  | 1485.03 | +6.93%  | delta=0.5, fast_2opt_iter=1001                               
Dynamic-gravity v1   | 0.0279 | +1156.99%  | 1486.12 | +7.01%  | delta=0.5, fast_2opt_iter=1001                               
Angular-radial v2    | 0.1263 | +5590.97%  | 1388.82 | BEST | sort_by=angle_distance, look_ahead=1000, max_2opt_iter=1001  
Angular-radial v1    | 0.2531 | +11304.79% | 1388.82 | BEST | sort_by=angle_distance, look_ahead=1001, max_2opt_iter=1001  
================================================================================================================================

PERFORMANCE ANALYSIS:
- Fastest algorithm(s): Greedy v2 (0.0022 sec)
- Shortest route(s): Angular-radial v1, Angular-radial v2 (1388.82 units)

Disclaimer: Performance results shown are for clustered distributions. Results may vary based on spatial characteristics. Always evaluate algorithms on your specific problem domains.