Library for computations on large numbers.
- underdeveloped:
- no plan for new functions (goniometric, radix, …)
- upcoming optimizations (memory consumption, speed up on some computations, ergonomy, …)
-
divrem
can perform unbearably whendivisor
is significantly smaller thandividend
(as per point 2)
- functions only:
- addition +substraction,
- multiplication +division
- relation operators
- order of magnitude
- power
let row = PlacesRow::new_from_num(u128::MAX);
let pow = pow(&row, 500);
let number = pow.to_number();
assert!(number.starts_with("8312324609993336522"));
assert_eq!(19266, number.len());
let dividend = PlacesRow::new_from_str("3402823669209384634633746074317682114565556668744123").unwrap();
let divisor = PlacesRow::new_from_str( "14034568236692093846346337460345176821145655563453").unwrap();
let ratio = "242";
let remainder = "6458155929897923817932408914149323848308022388497";
let ratrem = divrem(÷nd, &divisor).unwrap();
assert_eq!(ratio, ratrem.0.to_number());
assert_eq!(remainder, ratrem.1.to_number());
let number = Row::new_from_str("1489754132134687989463132131").unwrap();
let comparand = Row::new_from_str( "48645698946456531371").unwrap();
let decrel = rel_dec(&number, &comparand);
assert_eq!(RelDec::Greater((28, 20, 8)), decrel);
let number_1 = PlacesRow::new_from_num(3162277660168379331998893544432);
let number_2 = PlacesRow::new_from_num(3162277660168379331998893544433);
assert_eq!(Oom::Precise(30), ord_of_mag(&number_1, OomKind::Strict));
assert_eq!(Oom::Precise(31), ord_of_mag(&number_2, OomKind::Strict));
assert_eq!(Oom::Precise(30), ord_of_mag(&number_2, OomKind::Loose));