BCI.js is a library for EEG-based brain computer interface (BCI) design with JavaScript and Node.js. It allows for the creation of BCI enabled web apps or Node.js applications, with features such as:
- Signal processing and machine learning (LDA, CSP, ICA, PSD, etc.)
- Data manipulation (MATLAB style array subscripting, data windowing, CSV file support, etc.)
- Networking (data collection, streaming via OSC, etc.)
You can view all available methods in the docs
Getting Started
Node.js
npm install bcijs
Browser
<script src="https://cdn.jsdelivr.net/npm/bcijs@1.6.5/dist/bci.min.js"></script>
Tutorials
Examples
More examples can be found in the examples directory
Signal Processing
const bci = require('bcijs');
// Generate 1 second of sample data
let sampleRate = 512;
let duration = 1;
let amplitudes = [1, 2, 4, 8];
let frequencies = [
1, // 1 Hz, delta range
5, // 5 Hz, theta range
8, // 8 Hz, alpha range
17 // 17 Hz, beta range
];
let signal = bci.generateSignal(amplitudes, frequencies, sampleRate, duration);
// Compute average power in each frequency band
let fftSize = sampleRate * duration;
let bandpowers = bci.signalBandPower(
signal,
sampleRate,
['delta', 'theta', 'alpha', 'beta'],
{fftSize: fftSize} // optional, defaults to next power of 2 larger than or equal to signal length
);
console.log(bandpowers);
/*
[ 85.33333333333366,
128.00000000000122,
204.80000000000047,
113.77777777777825 ]
*/
Machine Learning
Check out https://bci.js.org/examples/lda for a visual demo of how LDA works
const bci = require('bcijs');
// Training set
let class1 = [
[0, 0],
[1, 2],
[2, 2],
[1.5, 0.5]
];
let class2 = [
[8, 8],
[9, 10],
[7, 8],
[9, 9]
];
// Testing set
let unknownPoints = [
[-1, 0],
[1.5, 2],
[3, 3],
[5, 5],
[7, 9],
[10, 12]
];
// Learn an LDA classifier
let ldaParams = bci.ldaLearn(class1, class2);
// Test classifier
let predictions = bci.ldaClassify(ldaParams, unknownPoints);
console.log(predictions); // [ 0, 0, 0, 1, 1, 1 ]
Data Manipulation and Feature Extraction
const bci = require('bcijs');
// Some random numbers
let data = [3, 2, 3, 0, 4, 0, 0, 5, 4, 0];
// Partition into training and testing sets
let [training, testing] = bci.partition(data, 0.6, 0.4);
console.log(training); // [3, 2, 3, 0, 4, 0]
console.log(testing); // [0, 5, 4, 0]
// Traverse the data array with windows of size 3 and a step of 2 (overlap of 1 item per window)
bci.windowApply(data, window => console.log(window), 3, 2);
/*
[ 3, 2, 3 ]
[ 3, 0, 4 ]
[ 4, 0, 0 ]
[ 0, 5, 4 ]
*/
// Find the log of the variance of these windows (feature extraction)
let features = bci.windowApply(data, bci.features.logvar, 3, 2);
console.log(features); // [-1.099, 1.466, 1.674, 1.946]
// Colon notation for array subscripting
let arr = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]
];
let subarr = bci.subscript(arr, '1 3', '2:4'); // rows 1 and 3, columns 2 through 4
console.log(subarr);
/*
[[2, 3, 4],
[10, 11, 12]]
*/
Usage in the web
BCI.js can be loaded from the jsDelivr CDN with
<script src="https://cdn.jsdelivr.net/npm/bcijs@1.6.5/dist/bci.min.js"></script>
You can also find bci.js
and bci.min.js
in the /dist directory.
BCI.js methods are accessible via the global object bci
.
If building a web distributable using a tool such as browserify or webpack, require bcijs/browser.js
to load only methods that are browser compatible. Node.js specific methods such as networking and file system methods will not be included.
const bci = require('bcijs/browser.js');
Requiring specific methods
You can require specific methods as well. For example, if you only need fastICA, you can use
const fastICA = require('bcijs/lib/math/fastICA.js');
BCI.js methods can be found in the lib/ directory.
Documentation
Documentation can be found at https://bci.js.org/docs or by viewing api.md
Building
See dev.md for info on how to modify and build BCI.js
Reference
BCI.js began as WebBCI, a library developed to aid in my research at the Human Technology Interaction Lab at the University of Alabama Department of Computer Science. If you use BCI.js in a published work, please reference this paper
P. Stegman, C. Crawford, and J. Gray, "WebBCI: An Electroencephalography Toolkit Built on Modern Web Technologies," in Augmented Cognition: Intelligent Technologies, 2018, pp. 212–221.
Logo uses icon from Font Awesome.
Contact
If you have a commercial use case for BCI.js and would like to discuss working together, contact me at pwstegman@gmail.com