Kala_Quantum is designed for quantum operations and training, enabling advanced computations and simulations for astronomical data such as the Sun and Moon's longitude and latitude. It integrates classical positional astronomy formulas with quantum computation concepts, allowing precise predictions and data processing over extensive timeframes (e.g., 9,000 years).
- Julian Date Calculation: Compute precise Julian dates for astronomical calculations.
- Sun and Moon Positioning: Calculate solar and lunar positions (longitude and latitude).
- Quantum State Simulation: Encode and process positional data using quantum states and gates.
- Quantum Training: Simulate training processes using hybrid quantum-classical models.
- Large-scale Data Generation: Predict Sun and Moon positions for every second over thousands of years.
- JSON Data Storage: Save results in a structured JSON format for easy retrieval and analysis.
- Python 3.8+
- NumPy
- TQDM (for progress tracking)
To install dependencies, run:
pip install numpy tqdm
git clone https://github.com/Kalasaikamesh944/Kala_Quantum.git
cd Kala_Quantum
Kala_Quantum/
├── __init__.py
├── datasets.py # Data handling modules
├── models.py # Quantum and classical model definitions
├── quantum_core.py # Quantum state and gate implementations
├── quantum_layer.py # Quantum-inspired layers for ML
├── tokenizer.py # Tokenization logic for code and data
├── train.py # Training utilities
├── tests/
│ ├── demo.py # Example script for Sun & Moon prediction
│ └── main.py # Model training script
└── build/ # Build-related files
Train the model to predict the Sun and Moon's positions for 9,000 years with second-level precision.
python Kala_Quantum/tests/demo.py
The training results (Sun and Moon positions) are saved in a JSON file:
sun_moon_positions.json
Sample JSON structure:
[
{
"julian_date": 2451545.00001,
"sun": {
"longitude": 280.5,
"latitude": 0,
"normalized": [0.779, 0.5],
"measurement": 1
},
"moon": {
"longitude": 134.7,
"latitude": 5.1,
"normalized": [0.374, 0.528],
"measurement": 0
}
},
...
]
You can compute Sun and Moon positions manually using:
from Kala_Quantum.quantum_core import QuantumState, hadamard
from demo import julian_date, sun_position, moon_position
# Example: Calculate positions for January 1, 2024
jd = julian_date(2024, 1, 1)
sun_long, sun_lat = sun_position(jd)
moon_long, moon_lat = moon_position(jd)
print(f"Sun Longitude: {sun_long}, Latitude: {sun_lat}")
print(f"Moon Longitude: {moon_long}, Latitude: {moon_lat}")
The Julian Date is calculated using: [ JD = \text{Integer part of } 365.25 \times (\text{Year} + 4716) + 30.6001 \times (\text{Month} + 1) + \text{Day} + \text{Adjustments} ]
The Sun's longitude is calculated as: [ \lambda_{\text{sun}} = L + 1.915 \cdot \sin(g) + 0.020 \cdot \sin(2g) ] Where:
- ( L ): Mean longitude of the Sun
- ( g ): Mean anomaly of the Sun
The Moon's longitude and latitude are calculated using:
[
\lambda_{\text{moon}} = L + 6.289 \cdot \sin(M)
\beta_{\text{moon}} = 5.128 \cdot \sin(F)
]
Where:
- ( M ): Moon's mean anomaly
- ( F ): Moon's argument of latitude
Contributions are welcome! To contribute:
- Fork the repository.
- Create a new branch:
git checkout -b feature/your-feature
. - Commit your changes:
git commit -m "Add new feature"
. - Push to the branch:
git push origin feature/your-feature
. - Open a pull request.
This project is licensed under the MIT License - see the LICENSE file for details.
- Inspired by classical astronomy and quantum computation techniques.
- Thanks to the open-source community for supporting tools like NumPy and TQDM.
This document provides an overview of quantum gates implemented in the QuantumState
class. Quantum gates are fundamental building blocks of quantum circuits. Below, you’ll find definitions and graphical representations of these gates.
The Hadamard gate creates superposition: [ H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} ]
- Effect: Transforms (|0\rangle \rightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}}), and (|1\rangle \rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}).
- Pauli-X Gate (NOT Gate): [ X = \begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} ]
- Effect: Flips (|0\rangle \leftrightarrow |1\rangle).
- Pauli-Y Gate: [ Y = \begin{bmatrix} 0 & -i \ i & 0 \end{bmatrix} ]
- Effect: Combines a bit-flip and a phase-flip.
- Pauli-Z Gate: [ Z = \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} ]
- Effect: Flips the phase of (|1\rangle).
-
Phase Gate (S): [ S = \begin{bmatrix} 1 & 0 \ 0 & i \end{bmatrix} ]
-
T Gate: [ T = \begin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix} ]
[ CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix} ]
- Effect: Flips the target qubit if the control qubit is (|1\rangle).
[ SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} ]
- Effect: Swaps the states of two qubits.
[ TOFFOLI = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} ]
- Effect: A NOT operation on the target qubit if both control qubits are (|1\rangle).
[ FREDKIN = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} ]
- Effect: Swaps the two target qubits if the control qubit is (|1\rangle).
- Single-qubit gates operate on a single state vector.
- Multi-qubit gates act on combined Hilbert spaces using the Kronecker product.
This README explains the mathematical definitions and matrix representations of gates. For examples of usage, see the provided code.
For questions or suggestions, contact:
- N V R K SAI KAMESH YADAVALLI: saikamesh.y@gmail.com
- Project Repository: GitHub