cgsense2023

Conjugate Gradient SENSE (CG-SENSE) MRI Reconstruction


Keywords
nbdev
License
MIT
Install
pip install cgsense2023==0.0.5

Documentation

CG-SENSE

This tutorial is based on the RRSG_Challenge_01 github repository.

pip install

The cgsense2023 package was uploaded to PyPI and can be easily installed using the below command.

pip install cgsense2023

How to use

Plot Module

# !pip install ../.
from cgsense2023.plot import *
import numpy as np
# Sequential - full - spoke radial trajectory
traj_full = gen_radial_traj(golden=False, full_spoke=True)
show_trajectory(traj_full, golden=True)

# golden - full - spoke radial trajectory
traj_full_golden = gen_radial_traj(golden=True, full_spoke=True)
show_trajectory(traj_full_golden, golden=True)

Nim, Nx, Ny = 12, 128, 256
x1 = np.random.randn(Nim, Nx, Ny)
x2 = np.random.randn(1, Nx, Ny)
show_image_grid(x1)
Warning: number of images (12) is larger than number of panels (2x5)!

show_image_grid(x2)

Metrics Module

from cgsense2023.metrics import *
import numpy as np
# same dimensions
Nim, Nx, Ny = 11, 128, 256
x1 = np.random.randn(1, Nx, Ny)
x2 = np.random.randn(1, Nx, Ny)
print_metrics(x1, x2)
+---------+-----------+
| Metrics |   Values  |
+---------+-----------+
|   MSE   | 2.002e+00 |
|   NMSE  | 1.998e+00 |
|   RMSE  | 1.415e+00 |
|  NRMSE  | 1.414e+00 |
|   PSNR  |   15.966  |
|   SSIM  |  0.010322 |
+---------+-----------+

Gridding Reconstruction

from cgsense2023.math import *
from cgsense2023.io import *
import cgsense2023 as cgs2003
from cgsense2023.mri import *
from cgsense2023.optimizer import *
import h5py
import numpy as np
import matplotlib.pyplot as plt

Data Paths

# path to the data file
fpath = '../testdata/rawdata_brain.h5'
# path to the reference results
rpath = '../testdata/CG_reco_inscale_True_denscor_True_reduction_1.h5'
with h5py.File(rpath, 'r') as rf:
    print(list(rf.keys()))
    ref_cg = np.squeeze(rf['CG_reco'][()][-1])
    ref_grid = np.squeeze(rf['Coil_images'][()])
['CG_reco', 'Coil_images']
ref_cg.shape, ref_grid.shape
((300, 300), (12, 300, 300))

Setup Parameters

# one stop shop for all Parameters and Data
params = setup_params(fpath, R=1)
['Coils', 'InScale', 'rawdata', 'trajectory']

Setup MRI Operator

# Set up MRI operator
mrimodel = MriImagingModel(params)
mriop = MriOperator(data_par=params["Data"],optimizer_par=params["Optimizer"])
mriop.set_operator(mrimodel)
# Single Coil images after FFT
my_grid = mriop.operator.NuFFT.adjoint(params['Data']['rawdata_density_cor'])
my_grid.shape, ref_grid.shape
((12, 300, 300), (12, 300, 300))
# test gridding recon results
np.allclose(ref_grid, my_grid)
True
# test gridding recon results
np.array_equal(ref_grid, my_grid)
False
print_metrics(np.abs(ref_grid[0]), np.abs(my_grid[0]))
+---------+-----------+
| Metrics |   Values  |
+---------+-----------+
|   MSE   | 1.472e-24 |
|   NMSE  | 5.905e-15 |
|   RMSE  | 1.213e-12 |
|  NRMSE  | 7.684e-08 |
|   PSNR  |   154.87  |
|   SSIM  |    1.0    |
+---------+-----------+
show_image_grid(my_grid, figsize=(10,10), rows=3, cols=4)

Gradient Descent

guess = np.zeros((params['Data']['image_dim'],params['Data']['image_dim']))
SD_result, SD_residuals, SD_ref_res = steepest_descent(mriop, guess, 
                                            params['Data']['rawdata_density_cor'], 
                                            iters=50,
                                            ref=ref_cg)
Residuum at iter 50 : 6.553379e-06
show_compared_images(np.abs(ref_cg), np.abs(SD_result), diff_fac=10, 
                     labels=['Reference', 'Steepest Descent', 'diff'])

np.allclose(ref_cg, SD_result)
False
print_metrics(np.abs(ref_cg), np.abs(SD_result))
+---------+-----------+
| Metrics |   Values  |
+---------+-----------+
|   MSE   | 5.633e-14 |
|   NMSE  | 7.888e-05 |
|   RMSE  | 2.373e-07 |
|  NRMSE  | 8.882e-03 |
|   PSNR  |   55.242  |
|   SSIM  |   0.9988  |
+---------+-----------+

CG’s Semi-Convergence Behavior

CG_result, CG_residuals, CG_ref_res = conjugate_gradient(mriop, guess, 
                                            params['Data']['rawdata_density_cor'], 
                                            iters=50,
                                            ref=ref_cg)
Residuum at iter 50 : 2.993229e-06
plt.plot(np.log10(SD_ref_res),'*--', label='SD reference_norms');
plt.plot(np.log10(SD_residuals),'*--', label='SD residual_norms');
plt.plot(np.log10(CG_ref_res),'*--', label='CG reference_norms');
plt.plot(np.log10(CG_residuals),'*--', label='CG residual_norms');
plt.grid();
plt.xlabel("# iteration")
plt.ylabel("residuals (log10)")
plt.legend();

Conjugate Gradient vs. REF

Based on the “semi-convergence” plot above, the optimal number of iterations for CG and SD are around 10 and 28, respectively.

CG_result_vs_REF, _, _ = conjugate_gradient(mriop, guess, 
                                            params['Data']['rawdata_density_cor'], 
                                            iters=10,
                                            ref=ref_cg)
Residuum at iter 10 : 1.826174e-05
show_compared_images(np.abs(ref_cg), np.abs(CG_result_vs_REF), diff_fac=200000, 
                     labels=['Reference', 'Conjugate Gradient', 'diff'])

np.allclose(ref_cg, CG_result_vs_REF)
True
print_metrics(np.abs(ref_cg), np.abs(CG_result_vs_REF))
+---------+-----------+
| Metrics |   Values  |
+---------+-----------+
|   MSE   | 1.196e-22 |
|   NMSE  | 1.675e-13 |
|   RMSE  | 1.094e-11 |
|  NRMSE  | 4.093e-07 |
|   PSNR  |   141.97  |
|   SSIM  |    1.0    |
+---------+-----------+

Developer install

If you want to develop cgsense2023 yourself, please use an editable installation of cgsense2023.

git clone https://github.com/hdocmsu/cgsense2023.git

pip install -e "cgsense2023[dev]"

You also need to use an editable installation of nbdev, fastcore, and execnb.

Happy Coding!!!

References

This template was created based on the below references. The list is not exhaustive so if you notice any missing references, please report an issue. I will promptly correct it.

Invitation to Contributions

If you would like to contribute to improve this repository please feel free to propose here.

License

Apache License 2.0