flask-production

cherrypy server for Flask + task scheduler and monitor


Keywords
cherrypy, flask, python3, tasks
License
MIT
Install
pip install flask-production==2.5.4

Documentation

flask-production

Cherrypy prod server for Flask + parallel task scheduler

Python 3.7 license pytest

Installation

pip install flask_production

Usage example

CherryFlask

Cherrypy server on top of Flask app

CherryFlask(app, scheduler=None, silent=False)

Parameters:

  • app (Flask): Flask application
  • scheduler (TaskScheduler): task scheduler to run in parallel with Flask app
  • silent (bool): don't print logs
    • default False
from flask import Flask
from flask_production import CherryFlask

app = Flask(__name__)
...

cherry = CherryFlask(app)
cherry.run(host="0.0.0.0", port=8080, threads=5, debug=False)

TaskScheduler

Main class to setup, run and manage jobs
TaskScheduler(check_interval=5,
   holidays_calendar=None,
   tzname=None,
   on_job_error=None,
   log_filepath=None,
   log_maxsize=5*1024*1024, # 5 MB
   log_backups=1,
   startup_grace_mins=0, # minutes
   persist_states=True,
   state_handler=None)

Parameters:

  • check_interval (int): how often to check for pending jobs
    • default 5 seconds
  • holidays_calendar (holidays.HolidayBase): calendar to use for intervals like businessday
    • default US holidays
  • tzname (str): name of timezone as supported by dateutil.tz
  • on_job_error (func(e)): function to call if any job fails
  • log_filepath (path): file to write logs to
  • log_maxsize (int): byte limit per log file
    • default 5 mb (only effective if log_filepath is provided)
  • log_backups (int): number of backups of logs to retain
    • default 1 (only effective if log_filepath is provided)
  • startup_grace_mins (int): grace period for tasks in case a schedule was missed because of app restart
    • default 0
  • persist_states (bool): store job logs and read back on app restart
    • default True (logs will be stored)
  • state_handler (.state.BaseStateHandler): different handler backends to store job logs
    • default .state.FileSystemState (logs will be stored in a unique data directory)

Standalone usage

from flask_production import TaskScheduler

sched = TaskScheduler(check_interval=2)

# Run every minute
sched.every(60).do(foo)

# Run on end of every month (with strict_date False)
sched.every("31st").strict_date(False).at("08:00").do(foo)

# Run every weekday
sched.every("weekday").at("08:00").do(lambda:bar())
sched.every("weekday").at("08:00").timezone("Europe/London").do(lambda:bar())

# catch() will run on job error
example_job = sched.every("weekday").at("09:00").do(lambda:failing()).catch(lambda e: print(e))

# access job information and status as dict
print(example_job.to_dict())
print(sched.jobs[-1].to_dict()) # same job

sched.start() # starts the task scheduler and blocks

Instead of sched.start(), TaskScheduler can be run in parallel with a Flask application using CherryFlask

from flask import Flask
from flask_production import TaskScheduler, CherryFlask

app = Flask(__name__)
...

sched = TaskScheduler()
...

cherry = CherryFlask(app, scheduler=sched)
cherry.run(host="0.0.0.0", port=8080, threads=5, debug=False)

TaskMonitor

The TaskScheduler exposes a list of Job objects through the .jobs attribute
Job information and logs from the last execution are available using the .to_dict() method
TaskMonitor uses these features to provide a web interface to view and rerun tasks
TaskMonitor(
   app,
   sched,
   display_name=None,
   endpoint="@taskmonitor",
   homepage_refresh=30,
   taskpage_refresh=5,
   can_rerun=True,
   can_disable=True)

Parameters:

  • app (int): Flask application
  • sched (TaskScheduler): task scheduler with task definitions
  • display_name (str): name of the application to be displayed
    • default app.name
  • endpoint (str): URL endpoint where the taskmonitor can be viewed
    • default "@taskmonitor"
  • homepage_refresh (int): home page auto refresh interval (in seconds)
    • default 30
  • taskpage_refresh (int): task page auto refresh interval (in seconds)
    • default 5
  • can_rerun (bool): if True adds rerun button to job page
    • default True
  • can_disable (bool): if True adds disable button to job page
    • default True
from flask import Flask
from flask_production import CherryFlask, TaskScheduler
from flask_production.plugins import TaskMonitor

app = Flask(__name__)
sched = TaskScheduler(check_interval=2)

monitor = TaskMonitor(app, sched)
print(monitor._endpoint) # /@taskmonitor

# Run every minute
sched.every(60).do(foo)

cherry = CherryFlask(app, scheduler=sched)
cherry.run(host="0.0.0.0", port=8080) # localhost:8080/@taskmonitor

Example Gist here

TODO:

scheduler - function argument validation