frame-averaging-pytorch

Frame Averaging


Keywords
artificial, intelligence, deep, learning, geometric, artificial-intelligence, deep-learning, geometric-learning
License
Other
Install
pip install frame-averaging-pytorch==0.1.1

Documentation

Frame Averaging - Pytorch

Pytorch implementation of a simple way to enable (Stochastic) Frame Averaging for any network. This technique was recently adopted by Prescient Design in AbDiffuser

Install

$ pip install frame-averaging-pytorch

Usage

import torch
from frame_averaging_pytorch import FrameAverage

# contrived neural network

net = torch.nn.Linear(3, 3)

# wrap the network with FrameAverage

net = FrameAverage(
    net,
    dim = 3,           # defaults to 3 for spatial, but can be any value
    stochastic = True  # whether to use stochastic variant from FAENet (one frame sampled at random)
)

# pass your input to the network as usual

points = torch.randn(4, 1024, 3)
mask = torch.ones(4, 1024).bool()

out = net(points, frame_average_mask = mask)

out.shape # (4, 1024, 3)

# frame averaging is automatically taken care of, as though the network were unwrapped

or you can also carry it out manually

import torch
from frame_averaging_pytorch import FrameAverage

# contrived neural network

net = torch.nn.Linear(3, 3)

# frame average module without passing in network

fa = FrameAverage()

# pass the 3d points and mask to FrameAverage forward

points = torch.randn(4, 1024, 3)
mask = torch.ones(4, 1024).bool()

framed_inputs, frame_average_fn = fa(points, frame_average_mask = mask)

# network forward

net_out = net(framed_inputs)

# frame average

frame_averaged = frame_average_fn(net_out)

frame_averaged.shape # (4, 1024, 3)

Citations

@article{Puny2021FrameAF,
    title   = {Frame Averaging for Invariant and Equivariant Network Design},
    author  = {Omri Puny and Matan Atzmon and Heli Ben-Hamu and Edward James Smith and Ishan Misra and Aditya Grover and Yaron Lipman},
    journal = {ArXiv},
    year    = {2021},
    volume  = {abs/2110.03336},
    url     = {https://api.semanticscholar.org/CorpusID:238419638}
}
@article{Duval2023FAENetFA,
    title   = {FAENet: Frame Averaging Equivariant GNN for Materials Modeling},
    author  = {Alexandre Duval and Victor Schmidt and Alex Hernandez Garcia and Santiago Miret and Fragkiskos D. Malliaros and Yoshua Bengio and David Rolnick},
    journal = {ArXiv},
    year    = {2023},
    volume  = {abs/2305.05577},
    url     = {https://api.semanticscholar.org/CorpusID:258564608}
}