generate gene co-function networks using omics data


Keywords
funmap, bioinformatics, biological-network
License
MIT
Install
pip install funmap==0.1.18

Documentation

funmap

funmap integrates multiple omics data sets (such as proteomics and RNASeq) to construct a functional network using supervised machine learning (xgboost).

Installation

Dependencies

funmap requires the following:

User installation

The easiest way to install funmap is using pip

pip install funmap

To upgrade to a newer release use the --upgrade flag

pip install --upgrade funmap

How to run

usage: funmap [-h] [--version] {qc,run} ...

funmap command line interface

options:
  -h, --help  show this help message and exit
  --version   show program's version number and exit

Commands:
  {qc,run}
    qc        check the data quality
    run       run funmap

Data quality check

Before running the experiment, user can check the quality of the input data using the following command in the project directory

funmap qc -c test_config.yml

User needs to prepare configuration file and an input data file. The configuration file is a YAML file that specifies the parameters for the experiment. The input data file is a tar gzipped file that contains the data for the experiment. A sample configuration file and a sample input data file can be found in the test directory.

Run the experiment

To run the experiment, use the following command in the project directory

funmap run -c test_config.yml

The run time of the experiment depends on the size of the input data file. The above command takes about 20-30 minutes to run on a standard computer using 4 threads.

Configuration file

Item Description Example Value
task For now always set to protein_func protein_func
name Unique identifier for the experiment. experiment_name
seed Random seed for reproducibility. 42
results_dir Directory where output results will be stored. results
filter_noncoding_genes Setting to exclude non-coding genes from analysis (True or False). True
cor_type Type of correlation, can be pearson or spearman. pearson
feature_type Type of features to be used in the analysis. mr (mutual rank) or cc (correlation coefficient). mr
n_jobs Number of parallel jobs or threads to use for processing. 40
min_sample_count Minimum number of samples required for calculating correlation. 15
start_edge_num Starting number of edges for calculating LR. 1000
max_num_edges Maximum number of edges to consider in network analysis. 250000
step_size Step size for incrementing edges in LR analysis. 100
lr_cutoff Cutoff threshold for LR (likelihood ratio) in LR analysis. 50
data_path Name of the compressed dataset file containing all necessary data files. Dataset_Name.tgz

Note: data_path should be the name of the tar gzipped file that contains all the data files. It should be placed in the same directory as the configuration file.

project_directory/
β”‚
β”œβ”€β”€ config.yml
β”‚
└── dataset_name/
    β”œβ”€β”€ protein_data_1.tsv
    β”œβ”€β”€ protein_data_2.tsv
    β”œβ”€β”€ rna_data_1.tsv
    └── rna_data_2.tsv

When in the project_directory, run the following command to compress the dataset:

tar -czvf Dataset_Name.tgz dataset_name/

data_files Section

The data_files section specifies the list of data files used in the analysis. Each entry includes a unique name, the type of data (protein or RNA), and the path to the data file.

Field Description Example Value
name Unique identifier for the data file. 'protein_data_file_1'
type Type of data ('protein' or 'rna'). 'protein'
path the data file name within the dataset. 'protein_data_1.tsv'

Example Entries for data_files:

data_files:
  - name: 'protein_data_file_1'
    type: 'protein'
    path: 'protein_data_1.tsv'
  - name: 'protein_data_file_2'
    type: 'protein'
    path: 'protein_data_2.tsv'
  - name: 'rna_data_file_1'
    type: 'rna'
    path: 'rna_data_1.tsv'

rp_pairs Section (Optional)

The rp_pairs section defines RNA-protein pairs for analysis. Each entry should include a unique identifier for the pair, along with the corresponding RNA and protein data file names from the data_files section.

Field Description Example Value
name Unique identifier for the RNA-protein pair. 'rna_protein_pair_1'
rna Identifier of the RNA data file from data_files. 'rna_data_file_1'
protein Identifier of the protein data file from data_files. 'protein_data_file_1'

Example Entries for rp_pairs:

rp_pairs:
  - name: 'rna_protein_pair_1'
    rna: 'rna_data_file_1'
    protein: 'protein_data_file_1'
  - name: 'rna_protein_pair_2'
    rna: 'rna_data_file_2'
    protein: 'protein_data_file_2'

Hardware requirements

funmap package requires only a standard computer with enough RAM to support the in-memory operations.

Output

The output directory contains the following files and directories:

.
β”œβ”€β”€ config.yml
β”œβ”€β”€ figures
β”‚Β Β  └── results.pdf
β”œβ”€β”€ llr_dataset.tsv
β”œβ”€β”€ llr_results_ei_25000.tsv
β”œβ”€β”€ llr_results_ex_25000.tsv
β”œβ”€β”€ networks
β”‚Β Β  β”œβ”€β”€ funmap.tsv
β”‚Β Β  β”œβ”€β”€ network_ei_25000.tsv
β”‚Β Β  └── network_ex_25000.tsv
β”œβ”€β”€ saved_data
β”‚Β Β  β”œβ”€β”€ all_features.fth
β”‚Β Β  β”œβ”€β”€ all_pairs.tsv.gz
β”‚Β Β  β”œβ”€β”€ all_valid_gene.txt
β”‚Β Β  β”œβ”€β”€ gold_standard_test_neg.pkl.gz
β”‚Β Β  β”œβ”€β”€ gold_standard_test_pos.pkl.gz
β”‚Β Β  └── gold_standard_train.pkl.gz
β”œβ”€β”€ saved_models
β”‚Β Β  └── model.pkl.gz
└── saved_predictions
    └── predicted_all_pairs.pkl.gz
  • config.yml: the configuration file used for the experiment
  • figures: the directory that contains the figures generated by the experiment. If QC was performed, the figures will be saved in this directory also.
  • llr_dataset.tsv: a tsv file contains log-likelihood ratio (LLR) analysis for each individual input data set.
  • llr_results_ei_25000.tsv: a tsv file contains LLR analysis for predictions based on the model trained with mutual rank and PPI features. The number in the file name indicates the maximum number of edges selected for LLR analysis.
  • llr_results_ex_25000.tsv: a tsv file contains LLR analysis for predictions based on the model trained with mutual rank features.
  • networks: the directory that contains the predicted networks. The network files are tab-separated files with three columns: gene1, gene2, and score. The score is the predicted probability of the edge between gene1 and gene2. funmap.tsv is the final predicted network. The edges meet the required LLR threshold.
  • saved_data: the directory that contains the saved data used for the experiment.
  • saved_models: the directory that contains the trained model.
  • saved_predictions: the directory that contains the predicted probabilities for all pairs of genes.