koho (TM)
koho (Hawaiian word for 'to estimate') is a Decision Forest C++ library with a scikit-learn compatible Python interface.
- Classification
- Numerical (dense) data
- Missing values (Not Missing At Random (NMAR))
- Class balancing
- Multi-Class
- Multi-Output (single model)
- Build order: depth first
- Impurity criteria: gini
- n Decision Trees with soft voting
- Split a. features: best over k (incl. all) random features
- Split b. thresholds: 1 random or all thresholds
- Stop criteria: max depth, (pure, no improvement)
- Bagging (Bootstrap AGGregatING) with out-of-bag estimates
- Important Features
- Export Graph
Change Log: 1.1.0 Multi-Output (single model) 1.0.0 Missing Values (NMAR) : Python, Cython(bindings), C++ 0.0.2 Criterion implemented in Cython 0.0.1 Classification : Python only
Copyright 2019, AI Werkstatt (TM). All rights reserved.