Monk_Object_Detection
A one-stop repository for low-code easily-installable object detection pipelines.
Documentation
Important Elements
-
A) Training Engine
- Train models on custom dataset witjh low code syntax
- Pretrained examples on variety of datasets
- Useful to train your own detector
-
B) Inference Engine
- Original pretrained models (from original authors and implementations) for inferencing and analysing
- Pretrained models on coco, voc, cityscpaes, type datasets
- Useful to analyse which algoeithm works best for you
- Useful to generate semi-accurate annotations (coco, pascal-voc, yolo formats) on a new dataset
Training engine - Pipelines presented as jupyter notebooks - see example_notebooks
(See the licenses for each pipeline and use accordingly)
-
A) GluonCV Finetune
- Original Implementation
-
Functional Documentation
- SSD with Vgg16
- SSD with Resnet50
- SSD with Resnet101
- SSD with MobileNet1.0
- YoloV3 with Darknet53
- YoloV3 with MobileNet1.0
-
B) TorchVision Finetune: Original
- Original Implementation
-
Functional Documentation
- Faster-RCNN with MobileNet2.0
-
C) MX-RCNN: Original
- Original Implementation
-
Functional Documentation
- Faster-RCNN with VGG16
- Faster-RCNN with Resnet50
- Faster-RCNN with Resnet101
-
D) Efficient-Det: Original
-
E) Pytorch-Retinanet: Original
- Original Implementation
-
Functional Documentation
- Resnet18
- Resnet34
- Resnet50
- Resnet101
- Resnet152
-
F) CornerNet-Lite: Original
- Original Implementation
-
Functional Documentation
- CornerNet-Saccade
- CornerNet-Squeeze
-
G) YOLOV3: Original
- Original Implementation
-
Functional Documentation
- yolov3
- yolov3s
- yolov3-spp
- yolov3-spp3
- yolov3-tiny
- yolov3-spp-matrix
- csresnext50-panet-spp
-
H) RFBNet:
- Original Implementation
-
Functional Documentation
- VGG16
- E_VGG16
- MobileNet
-
I) Segmentation_Models:
- Original Implementation
- [Functional Documentation]
- Unet
- FPN
- Linknet
- PSPNet
-
J) Pytorch_Efficientdet:
- Original Implementation
- [Functional Documentation]
- efficientdet-d0.pth
- efficientdet-d1.pth
- efficientdet-d2.pth
- efficientdet-d3.pth
- efficientdet-d4.pth
- efficientdet-d5.pth
- efficientdet-d6.pth
- efficientdet-d7.pth
Inference Engine
(See the licenses for each pipeline and use accordingly)
-
A) GluonCV Finetune
- Original Implementation
- Pretrained models on
- COCO Dataset
- Pascal VOC Dataset
- Models using
- SSD
- faster-rcnn
- Yolo-V3
- CenterNet
-
B) EfficientDet Pytorch
- Original Implementation
- Pretrained models on
- COCO Dataset
- Models using efficient network variants
-
C) DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution.
- Original Implementation
- Pretrained models on
- COCO Dataset
- Models using
- Resnet-50
- RexNext-101
Installation - Inference engine
- Check - Monk_Object_Detection/inference_engine/
Installation - Training engine
-
A) GluonCV Finetune
- Check - Monk_Object_Detection/1_gluoncv_finetune/
-
B) TorchVision Finetune
- Check - Monk_Object_Detection/2_pytorch_finetune/
-
C) MX-RCNN
- Check - Monk_Object_Detection/3_mxrcnn/
-
D) Efficient-Det
- Check - Monk_Object_Detection/4_efficientdet/
-
E) Pytorch-Retinanet
- Check - Monk_Object_Detection/5_pytorch_retinanet/
-
F) CornerNet-Lite
- Check - Monk_Object_Detection/6_cornernet_lite/
-
G) YoloV3
- Check - Monk_Object_Detection/7_yolov3/
-
H) RFBNet
- Check - Monk_Object_Detection/8_pytorch_rfbnet
-
I) Segmentation_Models
- Check - Monk_Object_Detection/9_segmentation_models
Author
Tessellate Imaging - https://www.tessellateimaging.com/
Check out Monk AI - (https://github.com/Tessellate-Imaging/monk_v1)
Monk features
- low-code
- unified wrapper over major deep learning framework - keras, pytorch, gluoncv
- syntax invariant wrapper
Enables developers
- to create, manage and version control deep learning experiments
- to compare experiments across training metrics
- to quickly find best hyper-parameters
To contribute to Monk AI or Monk Object Detection repository raise an issue in the git-repo or dm us on linkedin
- Abhishek - https://www.linkedin.com/in/abhishek-kumar-annamraju/
- Akash - https://www.linkedin.com/in/akashdeepsingh01/
Copyright
Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.