monk-obj-test2

Monk Object Detection's 2_pytorch_finetune


Keywords
computervision, deeplearning, hacktoberfest, machine-learning, python3
License
Apache-2.0
Install
pip install monk-obj-test2==0.0.1

Documentation

Monk_Object_DetectionTweet Open Source Love

A one-stop repository for low-code easily-installable object detection pipelines.


Alt Text



Documentation




Important Elements

  • A) Training Engine

    • Train models on custom dataset witjh low code syntax
    • Pretrained examples on variety of datasets
    • Useful to train your own detector
  • B) Inference Engine

    • Original pretrained models (from original authors and implementations) for inferencing and analysing
    • Pretrained models on coco, voc, cityscpaes, type datasets
    • Useful to analyse which algoeithm works best for you
    • Useful to generate semi-accurate annotations (coco, pascal-voc, yolo formats) on a new dataset



Training engine - Pipelines presented as jupyter notebooks - see example_notebooks

(See the licenses for each pipeline and use accordingly)




Inference Engine

(See the licenses for each pipeline and use accordingly)

  • A) GluonCV Finetune

    • Original Implementation
    • Pretrained models on
      • COCO Dataset
      • Pascal VOC Dataset
    • Models using
      • SSD
      • faster-rcnn
      • Yolo-V3
      • CenterNet
  • B) EfficientDet Pytorch

  • C) DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution.




Installation - Inference engine

  • Check - Monk_Object_Detection/inference_engine/



Installation - Training engine

  • A) GluonCV Finetune

    • Check - Monk_Object_Detection/1_gluoncv_finetune/
  • B) TorchVision Finetune

    • Check - Monk_Object_Detection/2_pytorch_finetune/
  • C) MX-RCNN

    • Check - Monk_Object_Detection/3_mxrcnn/
  • D) Efficient-Det

    • Check - Monk_Object_Detection/4_efficientdet/
  • E) Pytorch-Retinanet

    • Check - Monk_Object_Detection/5_pytorch_retinanet/
  • F) CornerNet-Lite

    • Check - Monk_Object_Detection/6_cornernet_lite/
  • G) YoloV3

    • Check - Monk_Object_Detection/7_yolov3/
  • H) RFBNet

    • Check - Monk_Object_Detection/8_pytorch_rfbnet
  • I) Segmentation_Models

    • Check - Monk_Object_Detection/9_segmentation_models



Author

Tessellate Imaging - https://www.tessellateimaging.com/

Check out Monk AI - (https://github.com/Tessellate-Imaging/monk_v1)

Monk features
    - low-code
    - unified wrapper over major deep learning framework - keras, pytorch, gluoncv
    - syntax invariant wrapper

Enables developers
    - to create, manage and version control deep learning experiments
    - to compare experiments across training metrics
    - to quickly find best hyper-parameters

To contribute to Monk AI or Monk Object Detection repository raise an issue in the git-repo or dm us on linkedin




Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.