nbautoeval
nbautoeval
is a very lightweight python framework for creating auto-evaluated exercises inside a jupyter (python) notebook.
Given a text that describes the expectations, students are invited to write their own code, and can then see the outcome on teacher-defined data samples, compared with the results obtained through a teacher-provided solution, with a visual feedback.
At this point, due to lack of knowledge/documentation about open/edx (read: the
version running at FUN), there is no available code for exporting the results as
grades or anything similar (hence the autoeval
name).
There indeed are provisions in the code to accumulate statistics on all attempted corrections, as an attempt to provide feedback to teachers.
mybinder
Try it on Click the badge below to see a few sample demos under mybinder.org
- it's all
in the demo-notebooks
subdir.
NOTE the demo notebooks ship under a .py
format and require jupytext
intalled to be opened in Jupyter.
History
This was initially embedded into a MOOC on python2
that ran for the first time on the French FUN platform
in Fall 2014. It was then duplicated into a MOOC on
bioinformatics in Spring 2016
where it was named nbautoeval
for the first time, but still embedded in a
greater git module.
The current git repo is created in June 2016 from that basis, with the intention to be used as a git subtree from these 2 repos, and possibly others since a few people have proved interested.
Requirements
Target currently is any python-based notebook running on jupyter-v5. It is not
quite clear at this moment which version(s) specifically will work smoothly with
nbautoeval
, but in essence there is very little dependency to the jupyter
version.
It was initially written in python2 but is now targetting primarily python3; hopefully it still works for python2 :)
Installation
Initially, nbautoeval
was used in MOOC courses, that in turn were implemented
as git repos; in this context nbautoeval
was simply injected in this code
using git subtree.
It is now also available at pypi:
pip install nbautoeval
Overview
In this early stage the framework supports the following types of exercises
-
ExerciseFunction
: the student is asked to write a function -
ExerciseRegexp
: the student is asked to write a regular expression -
ExerciseGenerator
: the student is asked to write a generator function -
ExerciseClass
: tests will happen on a class implementation
A teacher who wishes to implement an exercise needs to write 2 parts :
-
One python file that defines an instance of an exercise class. This in a nutshell typically involves
- providing one solution (let's say a function) written in python
- providing a set of input data
- plus optionnally various tweaks for rendering the results
-
One notebook that imports this exercise object, and can then take advantage of it to write jupyter cells that typically
- invoke
example
on the exercise object to show examples of the expected output - invite the student to write their own code
- invoke
correction
on the exercise object to display the outcome.
- invoke