netomescalar: a computational method to scale (normalize, standardize) metabolite data


Keywords
normalization, standardization, metabolite, scaling
License
MIT
Install
pip install netomescalar==0.9.1

Documentation

netomescalar

  • A method to scale (LC-MS) metabolite profiles using reference pools and internal standards.

  • Please read detailed user manual at the wiki.

Prerequisites

  • Python3
  • pip3

Step 1 - Install netomescalar

From Mac OS $ sudo pip3 install netomescalar

From Windows OS open the command prompt as an administrator $ pip3 install netomescalar

Step 2 - Acquire a LC-MS profiles and sample information

netomescalar demo -or- Use your own in this format!

Step 3 - Run from python OR command line

From Python:

import pandas as pd
from netomescalar.netomescalar import all_normalize, z_score
data = pd.read_csv('/path/data.csv', header=0)
sample_information = pd.read_csv('/path/sample_information.csv')
df = all_normalize(is_to_use='valine-d8', pref_to_use='PREFA', prefs_to_remove='', normalization= ['NN', 'IS], data= data, sample_information=sample_information, pool_missing_p=100,
fill_method =None)

From command line:

$ netomescalar -i Data_Input.csv -s Sample_Info.csv -o norm_results.csv --pref-to-use PREFA -m nn --pool-missing-p 100 -m NN IS --is-to-use 'valine-d8'

Step 3 - Run from netome cafe, the netome web server

netome café