A Python framework for Probabilistic Acoustic Sediment Mapping. See project website here for more details
Contributing & Credits
Software Developer: Dr. Daniel Buscombe, Northern Arizona University, Flagstaff, AZ 86011, daniel.buscombe@nau.edu
Example backscatter data (.tiff files) originate from data collected by R2Sonic and distributed for use as part of the R2Sonic 2017 Multispectral Backscatter competition.
Bed observation data from Patricia Bay are digitized from data presented in: B.~Biffard. Seabed remote sensing by single-beam echosounder: models, methods and applications. Doctoral dissertation, University of Victoria, Canada, 2011.
Bed observation data from Portsmouth (NEWBEX) are digitized from data presented in: T.~Weber, L.~and Ward. Observations of backscatter from sand and gravel seafloors between 170 and 250 kHz. Journal of the Acoustical Society of America, vol.~138, no.~4, pp.~2169 - 2180, 2015.
CRF subfunctions using the pydensecrf wrapper
Setup
Installing in a conda virtual env (recommended)
PriSM is designed for use with Python 3
Windows:
conda create --name prism_test python=3
activate prism_test
pip install Cython
conda install gdal rasterio shapely fiona pyproj -y
conda config --add channels conda-forge
conda install pydensecrf
conda config --remove channels conda-forge
pip install git+https://github.com/dbuscombe-usgs/prism.git
Linux:
conda create --name prism_test python=3
source activate prism_test
pip install numpy Cython
pip install pydensecrf
pip install git+https://github.com/dbuscombe-usgs/prism.git
finally deactivate the venv ::
deactivate
Linux:
source deactivate
Installing as a library accessible outside of virtual env
- the latest 'bleeding edge' (pre-release) version directly from github::
pip install git+https://github.com/dbuscombe-usgs/prism.git
(Windows users) install git from here: https://git-scm.com/download/win
- from github repo clone::
git clone git@github.com:dbuscombe-usgs/prism.git
cd prism
python setup.py install
or a local installation:
python setup.py install --user
- linux users, using a virtual environment:
virtualenv venv
source venv/bin/activate
pip install numpy Cython
pip install git+https://github.com/dbuscombe-usgs/prism.git
deactivate ##(or source venv/bin/deactivate)
Running the test
Then run the test ::
python -c "import prism; prism.test.dotest()"
Using the GUI
run the GUI ::
python -c "import prism; prism.gui_funcs.gui()"
or alternatively from within the python console like so:
More info
Download the user manual
Using prism within python scripts
A full worked example using the NEWBEX data set
def run_prism():
#==================================================================================
##GMM parameters
covariance = 'full'
tol = 1e-2
##CRF parameters
theta = 300
mu = 100
n_iter = 15
# general settings
gridres = 1 # grid size in m
buff = 10 # buffer distance on each bed observation
prob_thres = 0.1 #probability threshold
chambolle = 0.0 #chambolle filter
test_size = 0.5
## update this with the full file path
bs100 = 'newbex_mosaic_100.tiff'
bs200 = 'newbex_mosaic_200.tiff'
bs400 = 'newbex_mosaic_400.tiff'
refs_file = 'newbex_bed.shp'
prefix = 'newbex'
#======== READ
#==================================================================================
input = [bs100, bs200, bs400]
img, bs = read_geotiff(input, gridres, chambolle)
bed = read_shpfile(refs_file, bs)
Lc = get_sparse_labels(bs, bed, buff)
if np.ndim(img)>2:
mask = img[:,:,0]==0
else:
mask = img==0
#======== GMM
#==================================================================================
g = fit_GMM(img, Lc, test_size, covariance, tol)
y_pred_gmm, y_prob_gmm, y_gmm_prob_per_class = apply_GMM(g, img, prob_thres)
#======== CRF
#==================================================================================
y_pred_crf, y_prob_crf, y_crf_prob_per_class = apply_CRF(img, Lc, bed['labels'], n_iter, prob_thres, theta, mu)
#======== PLOT
#==================================================================================
cmap = plt.get_cmap('tab20b',len(bed['labels'])-1).colors
cmap1 = []
cmap1.append('gray')
for k in cmap:
cmap1.append(colors.rgb2hex(k))
plot_dists_per_sed(Lc, img, bed, cmap1, prefix)
plot_gmm(mask, y_pred_gmm, y_prob_gmm, bs, bed, cmap, prefix)
plot_crf(mask, y_pred_crf, y_prob_crf, bs, bed, cmap, prefix)
plot_gmm_image(mask, y_pred_gmm, y_prob_gmm, bs, bed, cmap, prefix)
plot_crf_image(mask, y_pred_crf, y_prob_crf, bs, bed, cmap, prefix)
plot_gmm_crf(mask, y_pred_gmm, y_prob_gmm, y_pred_crf, y_prob_crf, bs, bed, cmap, prefix)
plot_gmm_crf_images(mask, y_pred_gmm, y_prob_gmm, y_pred_crf, y_prob_crf, bs, bed, cmap, prefix)
plot_bs_maps(img, bed, bs, cmap, prefix)
plot_confmatCRF(y_pred_crf, Lc, bed, prefix)
plot_confmatGMM(y_pred_gmm, Lc, bed, prefix)
#======== EXPORT
#==================================================================================
export_bed_data(bed, prefix)
export_gmm_gtiff(mask, y_pred_gmm.copy(), y_prob_gmm.copy(), bs, prefix)
export_crf_gtiff(mask, y_pred_crf.copy(), y_prob_crf.copy(), bs, prefix)
if __name__ == '__main__':
run_prism()
Version History
v. 0.1. 2/26/2018. Initial public release