probabilistic-automata

Python library for manipulating probabilistic automata.


License
MIT
Install
pip install probabilistic-automata==0.4.2

Documentation

Probabilistic Automata

Build Status Docs codecov PyPI version License: MIT

Python library for manipulating Probabilistic Automata. This library builds upon the dfa package.

Table of Contents

Installation

If you just need to use probabilistic_automata, you can just run:

$ pip install probabilistic_automata

For developers, note that this project uses the poetry python package/dependency management tool. Please familarize yourself with it and then run:

$ poetry install

Usage

The probabilistic_automata library centers around the PDFA object which models a finite probabilistic transition system, e.g., a Markov Decision Process, as a DFA or Moore Machine over a product alphabet over the system's actions and the environment's stochastic action.

import probabilistic_automata as PA

def transition(state, composite_action):
    sys_action, env_action = composite_action
    return (state + sys_action + env_action) % 2

def env_dist(state, sys_action):
    """Based on state and the system action, what are the probabilities 
    of the environment's action."""

    return {0: 1/2, 1: 1/2}  # Always a coin flip.

noisy_parity = PA.pdfa(
    start=0,
    label=bool,
    inputs={0, 1},
    env_inputs={0, 1},
    outputs={0, 1},
    transition=transition,
    env_dist=env_dist,   # Equivalently, PA.uniform({0, 1}).
)

The support and transition probabilities can easily calculated:

assert noisy_parity.support(0, 0) == {0, 1}
assert noisy_parity.transition_probs(0, 0) == {0: 1/2, 1: 1/2}
assert noisy_parity.prob(start=0, action=0, end=0) == 1/2

Dict <-> PDFA

Note that pdfa provides helper functions for going from a dictionary based representation of a probabilistic transition system to a PDFA object and back.

import probabilistic_automata as PA

mapping = {
    "s1": (True, {
        'a': {'s1': 0.5, 's2': 0.5},
    }),
    "s2": (False, {
        'a': {'s1': 1},
    }),
}

start = "s1"
pdfa = PA.dict2pdfa(mapping=mapping, start=start)
assert pdfa.inputs == {'a'}

mapping2, start2 = PA.pdfa2dict(pdfa)
assert start == start2
assert mapping2 == mapping

DFA to PDFA

The probabilistic_automata library has two convenience methods for transforming a Deterministic Finite Automaton (dfa.DFA) into a PDFA.

  • The lift function simply creates a PDFA whose transitions are deterministic and match the original dfa.DFA.
import probabilistic_automata as PA
from dfa import DFA

parity = DFA(
    start=0,
    inputs={0, 1},
    label=bool,
    transition=lambda s, c: (s + c) & 1,
)

parity_pdfa = lift(parity)

assert pdfa.inputs == parity.inputs
assert pdfa.env_inputs == {None}
  • The randomize function takes a DFA and returns a PDFA modeling the actions of the DFA being selected uniformly at random.
noisy_parity = PA.randomize(parity)

assert noisy_parity.inputs == {None}
assert noisy_parity.env_inputs == noisy_parity.inputs

Composition

Like their deterministic variants PDFA objects can be combined in two ways:

  1. (Synchronous) Cascading Composition: Feed outputs of one PDFA into another.
machine = noisy_parity >> noisy_parity

assert machine.inputs == noisy_parity.inputs
assert machine.outputs == noisy_parity.outputs
assert machine.start == (0, 0)

assert machine.support((0, 0), 0) == {(0, 0), (0, 1), (1, 0), (1, 1)}
  1. (Synchronous) Parallel Composition: Run two PDFAs in parallel.
machine = noisy_parity | noisy_parity

assert machine.inputs.left == noisy_parity.inputs
assert machine.inputs.right == noisy_parity.inputs

assert machine.outputs.left == noisy_parity.outputs
assert machine.outputs.right == noisy_parity.outputs

assert machine.env_inputs.left == noisy_parity.env_inputs
assert machine.env_inputs.right == noisy_parity.env_inputs

assert machine.start == (0, 0)
assert machine.support((0, 0), (0, 0)) == {(0, 0), (0, 1), (1, 0), (1, 1)}

Note Parallel composition results in a PDFA with dfa.ProductAlphabet input and output alphabets.