Python Client for Epsilla Vector Database
Welcome to Python SDK for Epsilla Vector Database!
pip3 install --upgrade pyepsilla
docker pull epsilla/vectordb
docker run -d -p 8888:8888 epsilla/vectordb
from pyepsilla import vectordb
## connect to vectordb
client = vectordb.Client(
host='localhost',
port='8888'
)
## load and use a database
client.load_db(db_name="MyDB", db_path="/tmp/epsilla")
client.use_db(db_name="MyDB")
## create a table in the current database
client.create_table(
table_name="MyTable",
table_fields=[
{"name": "ID", "dataType": "INT", "primaryKey": True},
{"name": "Doc", "dataType": "STRING"},
{"name": "Embedding", "dataType": "VECTOR_FLOAT", "dimensions": 4}
]
)
## insert records
client.insert(
table_name="MyTable",
records=[
{"ID": 1, "Doc": "Berlin", "Embedding": [0.05, 0.61, 0.76, 0.74]},
{"ID": 2, "Doc": "London", "Embedding": [0.19, 0.81, 0.75, 0.11]},
{"ID": 3, "Doc": "Moscow", "Embedding": [0.36, 0.55, 0.47, 0.94]},
{"ID": 4, "Doc": "San Francisco", "Embedding": [0.18, 0.01, 0.85, 0.80]},
{"ID": 5, "Doc": "Shanghai", "Embedding": [0.24, 0.18, 0.22, 0.44]}
]
)
## search with specific response field
status_code, response = client.query(
table_name="MyTable",
query_field="Embedding",
query_vector=[0.35, 0.55, 0.47, 0.94],
response_fields = ["Doc"],
limit=2
)
print(response)
## search without specific response field, then it will return all fields
status_code, response = client.query(
table_name="MyTable",
query_field="Embedding",
query_vector=[0.35, 0.55, 0.47, 0.94],
limit=2
)
print(response)
## delete records by primary_keys (and filter)
status_code, response = client.delete(table_name="MyTable", primary_keys=[3, 4])
status_code, response = client.delete(table_name="MyTable", filter="Doc <> 'San Francisco'")
print(response)
## drop a table
client.drop_table("MyTable")
## unload a database from memory
client.unload_db("MyDB")
Please check example for detail.
from pyepsilla import cloud
# Connect to Epsilla Cloud
client = cloud.Client(project_id="32ef3a3f-****-****-****-************", api_key="eps_**********")
# Connect to Vectordb
db = client.vectordb(db_id="df7431d0-****-****-****-************")
The resp will contains answer as well as contexts, like {"answer": "****", "contexts": ['context1','context2', ...]}
from pyepsilla import cloud
# Connect to Epsilla RAG
client = cloud.RAG(
project_id="ce07c6fc-****-****-b7bd-b7819f22bcff",
api_key="eps_**********",
ragapp_id="153a5a49-****-****-b2b8-496451eda8b5",
conversation_id="6fa22a6a-****-****-b1c3-5c795d0f45ef",
)
# Start a new conversation with RAG
client.start_new_conversation()
resp = client.query("What's RAG?")
print("[INFO] response is", resp)
Bug reports and pull requests are welcome on GitHub at here
If you have any question or problem, please join our discord
We love your Feedback!