rcbtools

Analysis toolkit for RCB stars evolved in MESA


License
MIT
Install
pip install rcbtools==0.4.0

Documentation

rcbtools

An analysis toolkit for RCB stars simulated in MESA

Installing/Uninstalling rcbtools

To install rcbtools, simply clone or download this repo, then cd into it and type the following command:

pip install .

To uninstall rcbtools, type the following command:

pip uninstall rcbtools

Using rcbtools

Once installed, you should be able to access the tools like you would import any package:

import rcbtools

After importing rcbtools, you can begin to use some of the tools as you wish. Here are some examples to get you started:

import rcbtools
import matplotlib.pyplot as plt

p = rcbtools.profile2dict('profile1.data') # Create a dict of values from a MESA profile (column headers are keys)
p.keys() # See a list of available keys for the dictionary "p"
plt.semilogy(p["mass"],10**p["logT"]) # Create log plot of temperature v mass

abunds = rcbtools.makeabund('profile1.data') # Create a dict of elements from MESA profile
plt.loglog(p["mass"],abunds["C"]) # Create a log plot of total carbon abundance (sum of all isotopes) v mass

rcbtools.surfabund('profile1.data') # Make surface abundance plot and print surface information

rcbtools.surfabund2('profile1.data',elements=['Li','C','N','O','Ne']) # Same as above, but specify elements

h = rcbtools.profile2dict('history.data') #Import history datafile as python dict

plt.plot(h['log_Teff'],h['log_L']) # Create HR plot from history datafile
plt.xlim(max(h['log_Teff']),min(h['log_Teff'])) # reverse x-axis