ββββββ ββββββ ββββ βββββ βββ
βββ β ββ β βββββββ βββββββββ
β ββββ ββββ βββ βββββββ βββ
β ββββββ β βββ βββ βββββββββ
ββββββββββββββββββββ ββββ ββ ββββ
β βββ β βββ ββ ββ ββ β β ββ ββββ
β ββ β β β β ββ β β β ββ β
β β β β β β β β
β β β β β β
* Python 3.8 (angr)
* KVM/QEMU
* Celery
Tested on Ubuntu 18 LTS. Checkout Makefile and install.sh for more details.
Recommanded installation:
# WARNING: slow since one submodule contains preconfigure VMs
git clone --recurse-submodules https://github.com/csvl/SEMA-ToolChain.git;
# Full installation (ubuntu)
make install-docker;
# TODO link with VM on host
Classical installation:
# WARNING: slow since one submodule contains preconfigure VMs
git clone --recurse-submodules https://github.com/csvl/SEMA-ToolChain.git;
# Full installation (ubuntu)
cd SEMA-ToolChain/; source install.sh;
ARGS=<> make install-baremetal;
Optionals arguments are available for install.sh
:
-
--no_malware_db
: Unzip malware's DB (default : True) -
--vms_dl
: Download preconfigured cuckoo VMs (default : False) -
--vms_install
: Unzip downloaded VMs for cuckoo,vms_dl
must be true (default : False) -
--pypy
: Install also withpypy3
compiler (default : False) -
--pytorch_cuda
: Install also CUDA core enable withpytorch
(default : False)
To run this SCDG extractor you first need to install pip.
To install pip on debian-based systems:
sudo apt update;
sudo apt-get install python3-pip xterm;
To install pip on arch-based systems:
sudo pacman -Sy python-pip xterm;
For angr
, it is recommended to use the python virtual environment.
python3 -m venv penv;
This create a virtual envirnment called penv
.
Then, you can run your virtual environment with:
source penv/bin/activate;
For the testing environment, we use hypothesis
framework
This can be done by using the command :
pip3 install pytest hypothesis;
python3 -m pytest test/HypothesisExamples.py;
cd src/databases; bash extract_deploy_db.sh
For dev (code cleaning):
# PEP 8 compliant opinionated formatter with its own style
pip3 install git+git://github.com/psf/black;
cd src/
black --exclude .submodules .;
# Removes unused imports and unused variables from Python code
pip3 install --upgrade autoflake;
autoflake --in-place --remove-unused-variables --remove-all-unused-imports --recursive --exclude submodules ToolChainWorker.py;
In order to be faster, you should install pypy
python interpreter. You can add --pypy
to install.sh
but some installation error are still possible. The following command are not enough to fully build the project with pypy3 that is why we recommend to use install.sh --pypy
. Still some package problems.
Note: Pytorch
not working with pypy
.
PyPy3.7:
- Linux x86 64 bit:
sudo apt-get update sudo apt-get install libc6 sudo add-apt-repository ppa:pypy/ppa sudo apt update sudo apt install pypy3 pypy3-dev sudo apt-get install libatlas-base-dev pypy3 -m ensurepip pypy3 -m pip install --upgrade pip testresources setuptools wheel pypy3 -m pip install numpy pybind11 avatar2 yara yara-python pypy3 -m pip install . # TODO (hack) cd /tmp/ pypy3 -m pip install yara yara-python -t . sudo mkdir /usr/lib/pypy3/lib sudo cp usr/lib/pypy3/lib/libyara.so /usr/lib/pypy3/lib/libyara.so
Then in order to used it, replace the python3
command by pypy3
command.
Our toolchain is represented in the next figure and works as follow. A collection of labelled binaries of different malwares families is collected and used as the input of the toolchain. Angr, a framework for symbolic execution, is used to execute symbolically binaries and extract execution traces. For this purpose, different heuristics have been developped to optimize symbolic execution. Several execution traces (i.e : API calls used and their arguments) corresponding to one binary are extracted with Angr and gather together thanks to several graph heuristics to construct a SCDG. These resulting SCDGs are then used as input to graph mining to extract common graph between SCDG of the same family and create a signature. Finally when a new sample has to be classified, its SCDG is build and compared with SCDG of known families (thanks to a simple similarity metric).
Just run the script :
pypy3 Sema.py FOLDER_OF_BINARIES FOLDER_OF_SIGNATURE
python3 Sema.py FOLDER_OF_BINARIES FOLDER_OF_SIGNATURE
-
FOLDER
: Folder containing binaries to classify, these binaries must be ordered by familly (default :databases/malware-win/train
)
# For folder of malware
# Deep learning not supported with pypy3 (--classifier dl)
pypy3 Sema.py --memory_limit --CDFS --train --verbose_scdg --verbose_classifier databases/malware-win/train/ output/save-SCDG/
# (virtual env/penv)
python3 Sema.py --memory_limit --CDFS --train --verbose_scdg --verbose_classifier databases/malware-win/train/ output/save-SCDG/
This repository contains a first version of a SCDG extractor. During symbolic analysis of a binary, all system calls and their arguments found are recorded. After some stop conditions for symbolic analysis, a graph is build as follow : Nodes are systems Calls recorded, edges show that some arguments are shared between calls.
Just run the script :
pypy3 SemaSCDG.py BINARY_NAME
python3 SemaSCDG.py BINARY_NAME
usage: update_readme_usage.py [--DFS | --BFS | --CDFS | --CBFS] [--gs | --json] [--symbion | --unipacker] [--packed] [--concrete_target_is_local] [--symb_loop SYMB_LOOP]
[--limit_pause LIMIT_PAUSE] [--max_step MAX_STEP] [--max_deadend MAX_DEADEND] [--simul_state SIMUL_STATE] [--n_args N_ARGS] [--conc_loop CONC_LOOP]
[--min_size MIN_SIZE] [--disjoint_union] [--not_comp_args] [--three_edges] [--not_ignore_zero] [--dir DIR] [--discard_SCDG] [--eval_time]
[--timeout TIMEOUT] [--not_resolv_string] [--exp_dir EXP_DIR] [--memory_limit] [--verbose_scdg] [--debug_error] [--familly FAMILLY]
binary
SCDG module arguments
optional arguments:
help show this help message and exit
--DFS TODO
--BFS TODO
--CDFS TODO
--CBFS TODO
--gs .GS format
--json .JSON format
--symbion Concolic unpacking method (linux | windows [in progress])
--unipacker Emulation unpacking method (windows only)
Packed malware:
--packed Is the binary packed ? (default : False)
--concrete_target_is_local
Use a local GDB server instead of using cuckoo (default : False)
SCDG exploration techniques parameters:
--symb_loop SYMB_LOOP
Number of iteration allowed for a symbolic loop (default : 3)
--limit_pause LIMIT_PAUSE
Number of states allowed in pause stash (default : 200)
--max_step MAX_STEP Maximum number of steps allowed for a state (default : 50 000)
--max_deadend MAX_DEADEND
Number of deadended state required to stop (default : 600)
--simul_state SIMUL_STATE
Number of simultaneous states we explore with simulation manager (default : 5)
Binary parameters:
--n_args N_ARGS Number of symbolic arguments given to the binary (default : 0)
--conc_loop CONC_LOOP
Number of symbolic arguments given to the binary (default : 1024)
SCDG creation parameter:
--min_size MIN_SIZE Minimum size required for a trace to be used in SCDG (default : 3)
--disjoint_union Do we merge traces or use disjoint union ? (default : merge)
--not_comp_args Do we compare arguments to add new nodes when building graph ? (default : comparison enabled)
--three_edges Do we use the three-edges strategy ? (default : False)
--not_ignore_zero Do we ignore zero when building graph ? (default : Discard zero)
--dir DIR Directory to save outputs graph for gspan (default : output/)
--discard_SCDG Do not keep intermediate SCDG in file (default : True)
--eval_time Keep intermediate SCDG in file (default : False)
Global parameter:
--timeout TIMEOUT Timeout in seconds before ending extraction (default : 600)
--not_resolv_string Do we try to resolv references of string (default : False)
--exp_dir EXP_DIR Directory to save SCDG extracted (default : output/save-SCDG/)
--memory_limit Skip binary experiment when memory > 90% (default : False)
--verbose_scdg Verbose output during calls extraction (default : False)
--debug_error Debug error states (default : False)
--familly FAMILLY Familly of the malware (default : unknown)
binary Name of the binary to analyze
Program will output a graph in .gs
format that could be exploited by gspan
.
You also have a script merge_gspan.py
which could merge all .gs
from a directory into only one file.
Password for Examples archive is "infected". Warning : it contains real samples of malwares.
# +- 447 sec <SimulationManager with 61 deadended>
pypy3 SemaSCDG/SemaSCDG.py --DFS --verbose_scdg databases/malware-win/train/nitol/00b2f45c7befbced2efaeb92a725bb3d
# +- 512 sec <SimulationManager with 61 deadended>
# (virtual env/penv)
python3 SemaSCDG/SemaSCDG.py --DFS --verbose_scdg databases/malware-win/train/nitol/00b2f45c7befbced2efaeb92a725bb3d
# timeout (+- 607 sec)
# <SimulationManager with 6 active, 168 deadended, 61 pause, 100 ExcessLoop> + 109 SCDG
pypy3 SemaSCDG/SemaSCDG.py --DFS --verbose_scdg databases/malware-win/train/RedLineStealer/0f1153b16dce8a116e175a92d04d463ecc113b79cf1a5991462a320924e0e2df
# timeout (611 sec)
# <SimulationManager with 5 active, 69 deadended, 63 pause, 100 ExcessLoop> + 53 SCDG
# (virtual env/penv)
python3 SemaSCDG/SemaSCDG.py --DFS --verbose_scdg databases/malware-win/train/RedLineStealer/0f1153b16dce8a116e175a92d04d463ecc113b79cf1a5991462a320924e0e2df
When a new sample has to be evaluated, its SCDG is first build as described previously. Then, gspan
is applied to extract the biggest common subgraph and a similarity score is evaluated to decide if the graph is considered as part of the family or not.
The similarity score S
between graph G'
and G''
is computed as follow:
Since G''
is a subgraph of G'
, this is calculating how much G'
appears in G''
.
Another classifier we use is the Support Vector Machine (SVM
) with INRIA graph kernel or the Weisfeiler-Lehman extension graph kernel.
Just run the script :
python3 SemaClassifier.py FOLDER/FILE
usage: update_readme_usage.py [-h] [--threshold THRESHOLD] [--biggest_subgraph BIGGEST_SUBGRAPH] [--support SUPPORT] [--ctimeout CTIMEOUT] [--epoch EPOCH] [--sepoch SEPOCH]
[--data_scale DATA_SCALE] [--vector_size VECTOR_SIZE] [--batch_size BATCH_SIZE] (--classification | --detection) (--wl | --inria | --dl | --gspan)
[--bancteian] [--delf] [--FeakerStealer] [--gandcrab] [--ircbot] [--lamer] [--nitol] [--RedLineStealer] [--sfone] [--sillyp2p] [--simbot]
[--Sodinokibi] [--sytro] [--upatre] [--wabot] [--RemcosRAT] [--verbose_classifier] [--train] [--nthread NTHREAD]
binaries
Classification module arguments
optional arguments:
-h, --help show this help message and exit
--classification By malware family
--detection Cleanware vs Malware
--wl TODO
--inria TODO
--dl TODO
--gspan TODOe
Global classifiers parameters:
--threshold THRESHOLD
Threshold used for the classifier [0..1] (default : 0.45)
Gspan options:
--biggest_subgraph BIGGEST_SUBGRAPH
Biggest subgraph consider for Gspan (default: 5)
--support SUPPORT Support used for the gpsan classifier [0..1] (default : 0.75)
--ctimeout CTIMEOUT Timeout for gspan classifier (default : 3sec)
Deep Learning options:
--epoch EPOCH Only for deep learning model: number of epoch (default: 5) Always 1 for FL model
--sepoch SEPOCH Only for deep learning model: starting epoch (default: 1)
--data_scale DATA_SCALE
Only for deep learning model: data scale value (default: 0.9)
--vector_size VECTOR_SIZE
Only for deep learning model: Size of the vector used (default: 4)
--batch_size BATCH_SIZE
Only for deep learning model: Batch size for the model (default: 1)
Malware familly:
--bancteian
--delf
--FeakerStealer
--gandcrab
--ircbot
--lamer
--nitol
--RedLineStealer
--sfone
--sillyp2p
--simbot
--Sodinokibi
--sytro
--upatre
--wabot
--RemcosRAT
Global parameter:
--verbose_classifier Verbose output during train/classification (default : False)
--train Launch training process, else classify/detect new sample with previously computed model
--nthread NTHREAD Number of thread used (default: max)
binaries Name of the folder containing binary'signatures to analyze (Default: output/save-SCDG/, only that for ToolChain)
This will train models for input dataset
# Note: Deep learning model not supported by pypy --classifier dl
pypy3 SemaClassifier/SemaClassifier.py --train output/save-SCDG/
python3 SemaClassifier/SemaClassifier.py --train output/save-SCDG/
This will classify input dataset based on previously computed models
pypy3 SemaClassifier/SemaClassifier.py output/test-set/
python3 SemaClassifier/SemaClassifier.py output/test-set/
Only support deep learning models for now.
On each client you should run:
bash run_worker --hostname=<name>
Then run the script on the master node:
pypy3 SemaFL.py --hostnames <listname> BINARY_NAME
python3 SemaFL.py --hostnames <listname> BINARY_NAME
-
run_name
: Name for the experiments (default : "") -
nrounds
: Number of rounds for training (default : 5) -
demonstration
: If set, use specific dataset for each client (up to 3) to simulate different dataset in clients, else use the same input folder dataset for all clients (default : False) -
no_scdg_create
: Skip SCDGs create phase (default: False) -
hostnames
: Hostnames for celery clients -
smodel
: Only for deep learning model: Share model type, 1 partly aggregation (client do not have necessary the same family samples) and 0 fully aggregation (default: 0) -
classification
: Enable the pre-train classifier
Experiments purpose arguments:
-
sround
: Restart from sround (default : 0) -
nparts
: Number of partitions (default : 3)
You can use any arguments of the toolchain in addition.
On each client + master you should run:
(screen) bash run_worker.sh --hostname=host1 # client 1 = master node
(screen) bash run_worker.sh --hostname=host2 # client 2
(screen) bash run_worker.sh --hostname=host2 # client 3
Then on the master node:
bash setup_network.sh
(screen) python3 SemaFL.py --memory_limit --demonstration --timeout 100 --method CDFS --classifier dl --smodel 1 --hostnames host1 host2 host3 --verbose_scdg databases/malware-win/small_train/ output/save-SCDG/
(screen) python3 SemaFL.py --memory_limit --demonstration --timeout 100 --method CDFS --classifier gspan --hostnames host1 host2 host3 --verbose_scdg databases/malware-win/small_train/ output/save-SCDG/
Source: https://unix.stackexchange.com/questions/479/keep-processes-running-after-ssh-session-disconnects
sudo apt-get install screen
To list detached programs
screen -list
To disconnect (but leave the session running) Hit Ctrl + A
and then Ctrl + D
in immediate succession. You will see the message [detached]
To reconnect to an already running session
screen -r
To reconnect to an existing session, or create a new one if none exists
screen -D -r
To create a new window inside of a running screen session Hit Ctrl + A
and then C
in immediate succession. You will see a new prompt.
To switch from one screen window to another Hit Ctrl + A
and then Ctrl + A
in immediate succession.
To list open screen windows Hit Ctrl + A
and then W
in immediate succession
Main authors of the projects:
-
Charles-Henry Bertrand Van Ouytsel (UCLouvain)
-
Christophe Crochet (UCLouvain)
-
Khanh Huu The Dam (UCLouvain)
Under the supervision and with the support of Fabrizio Biondi (Avast)
Under the supervision and with the support of our professor Axel Legay (UCLouvain) (:heart:)