spinesUtils is a user-friendly toolkit for the machine learning ecosystem.


Keywords
machine, learning, data-science, machine-learning, machine-learning-algorithms, preprocessing-data
License
Apache-2.0
Install
pip install spinesUtils==0.4.1

Documentation

spinesUtils

Dedicated to helping users do more in less time.

spinesUtils is a user-friendly toolkit for the machine learning ecosystem, offering ready-to-use features such as

  • Logging functionality
  • Type checking and parameter generation
  • CSV file reading acceleration
  • Classifiers for imbalanced data
  • Pandas Dataframe data compression
  • Pandas DataFrame insight tools
  • Large data training and testing set splitting functions
  • An intuitive timer.

It is currently undergoing rapid iteration. If you encounter any issues with its functionalities, feel free to raise an issue.

Installation

You can install spinesUtils from PyPI:

pip install spinesUtils

Logger

You can use the Logger class to print your logs without worrying about handler conflicts with the native Python logging module.

This class provides log/debug/info/warning/error/critical methods, where debug/info/warning/error/critical are partial versions of the log method, available for use as needed.

# load spinesUtils module
from spinesUtils.logging import Logger

# create a logger instance, with name "MyLogger", and no file handler, the default level is "INFO"
# You can specify a file path `fp` during instantiation. If not specified, logs will not be written to a file.
logger = Logger(name="MyLogger", fp=None, level="DEBUG")

logger.log("This is an info log emitted by the log function.", level='INFO')
logger.debug("This is an debug message")
logger.info("This is an info message.")
logger.warning("This is an warning message.")
logger.error("This is an error message.")
logger.critical("This is an critical message.")
2024-01-19 15:02:51 - MyLogger - INFO - This is an info log emitted by the log function.
2024-01-19 15:02:51 - MyLogger - DEBUG - This is an debug message
2024-01-19 15:02:51 - MyLogger - INFO - This is an info message.
2024-01-19 15:02:51 - MyLogger - WARNING - This is an warning message.
2024-01-19 15:02:51 - MyLogger - ERROR - This is an error message.
2024-01-19 15:02:51 - MyLogger - CRITICAL - This is an critical message.

Type checking and parameter generation

from spinesUtils.asserts import *

# check parameter type
@ParameterTypeAssert({
    'a': (int, float),
    'b': (int, float)
})
def add(a, b):
    pass

# try to pass a string to the function, and it will raise an ParametersTypeError error
add(a=1, b='2')
---------------------------------------------------------------------------

ParametersTypeError                       Traceback (most recent call last)

Cell In[2], line 12
      9     pass
     11 # try to pass a string to the function, and it will raise an ParametersTypeError error
---> 12 add(a=1, b='2')


File ~/projects/spinesUtils/spinesUtils/asserts/_inspect.py:196, in ParameterTypeAssert.__call__.<locals>.wrapper(*args, **kwargs)
    194 if mismatched_params:
    195     error_msg = self.build_type_error_msg(mismatched_params)
--> 196     raise ParametersTypeError(error_msg)
    198 return func(**kwargs)


ParametersTypeError: Function 'add' parameter(s) type mismatch: b only accept '['int', 'float']' type.
# check parameter value
@ParameterValuesAssert({
    'a': lambda x: x > 0,
    'b': lambda x: x > 0
})
def add(a, b):
    pass

# try to pass a negative number to the function, and it will raise an ParametersValueError error
add(a=1, b=-2)
---------------------------------------------------------------------------

ParametersValueError                      Traceback (most recent call last)

Cell In[3], line 10
      7     pass
      9 # try to pass a negative number to the function, and it will raise an ParametersValueError error
---> 10 add(a=1, b=-2)


File ~/projects/spinesUtils/spinesUtils/asserts/_inspect.py:258, in ParameterValuesAssert.__call__.<locals>.wrapper(*args, **kwargs)
    256 if mismatched_params:
    257     error_msg = self.build_values_error_msg(mismatched_params)
--> 258     raise ParametersValueError(error_msg)
    260 return func(**kwargs)


ParametersValueError: Function 'add' parameter(s) values mismatch: `b` must in or satisfy ''b': lambda x: x > 0' condition(s).
# generate a dictionary of keyword arguments for a given function using provided arguments
generate_function_kwargs(add, a=1, b=2)
{'a': 1, 'b': 2}
# isinstance function with support for None
augmented_isinstance(1, (int, float, None))
True
# raise_if and raise_if_not functions
raise_if(ValueError, 1 == 1, "test raise_if")
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

Cell In[6], line 2
      1 # raise_if and raise_if_not functions
----> 2 raise_if(ValueError, 1 == 1, "test raise_if")


File ~/projects/spinesUtils/spinesUtils/asserts/_type_and_exceptions.py:115, in raise_if(exception, condition, error_msg)
    112 assert issubclass(exception, BaseException), "Exception must be a subclass of BaseException."
    114 if condition:
--> 115     raise exception(error_msg)


ValueError: test raise_if
raise_if_not(ZeroDivisionError, 1 != 1, "test raise_if_not")
---------------------------------------------------------------------------

ZeroDivisionError                         Traceback (most recent call last)

Cell In[7], line 1
----> 1 raise_if_not(ZeroDivisionError, 1 != 1, "test raise_if_not")


File ~/projects/spinesUtils/spinesUtils/asserts/_type_and_exceptions.py:144, in raise_if_not(exception, condition, error_msg)
    141 assert issubclass(exception, BaseException), "Exception must be a subclass of BaseException."
    143 if not condition:
--> 144     raise exception(error_msg)


ZeroDivisionError: test raise_if_not

Faster csv reader

from spinesUtils import read_csv

your_df = read_csv(
    fp='/path/to/your/file.csv',
    sep=',',  # equal to pandas read_csv.sep
    turbo_method='polars',  # use turbo_method to speed up load time
    chunk_size=None,  # it can be integer if you want to use pandas backend
    transform2low_mem=True,  # it can compresses file to save more memory
    verbose=False
)

Classifiers for imbalanced data

from spinesUtils.models import MultiClassBalanceClassifier
# make a toy dataset
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

dataset = make_classification(
    n_samples=10000,
    n_features=2,
    n_informative=2,
    n_redundant=0,
    n_repeated=0,
    n_classes=3,
    n_clusters_per_class=1,
    weights=[0.01, 0.05, 0.94],
    class_sep=0.8,
    random_state=0
)

X, y = dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn.ensemble import RandomForestClassifier

classifier = MultiClassBalanceClassifier(
    base_estimator=RandomForestClassifier(n_estimators=100),
    n_classes=3,
    random_state=0,
    verbose=0
)

# fit the classifier
classifier.fit(X_train, y_train)

# predict
y_pred = classifier.predict(X_test)

# print classification report
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

           0       0.74      0.72      0.73        32
           1       0.91      0.71      0.80       111
           2       0.98      1.00      0.99      1857

    accuracy                           0.98      2000
   macro avg       0.88      0.81      0.84      2000
weighted avg       0.98      0.98      0.98      2000

Pandas dataframe data compression

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

# compress dataframe
from spinesUtils import transform_dtypes_low_mem

transform_dtypes_low_mem(df, verbose=True, inplace=True)
Converting ...:   0%|          | 0/26 [00:00<?, ?it/s]


[log] INFO - Memory usage before conversion is: 19.84 MB  
[log] INFO - Memory usage after conversion is: 2.48 MB  
[log] INFO - After conversion, the percentage of memory fluctuation is 87.5 %
# batch compress dataframes
from spinesUtils import transform_batch_dtypes_low_mem

# make some toy datasets
df1 = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

df2 = df1.copy()
df3 = df1.copy()
df4 = df1.copy()

# batch compress dataframes
transform_batch_dtypes_low_mem([df1, df2, df3, df4], verbose=True, inplace=True)
Batch converting ...:   0%|          | 0/4 [00:00<?, ?it/s]


[log] INFO - Memory usage before conversion is: 79.35 MB  
[log] INFO - Memory usage after conversion is: 9.92 MB  
[log] INFO - After conversion, the percentage of memory fluctuation is 87.5 %

Pandas DataFrame insight tools

from spinesUtils import df_preview, classify_samples_dist

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

df_insight = df_preview(df)

df_insight
total na naPercent nunique dtype max 75% median 25% min mean mode variation std skew kurt samples
a 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.53968 36 0.9892 28.848392 -0.000158 -1.196434 (32, 81)
b 100000 0 0.0 100 int64 99.0 75.0 49.0 24.0 0.0 49.41822 40 0.98928 28.937601 0.005974 -1.206987 (76, 28)
c 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.58261 82 0.98923 28.928019 -0.003537 -1.202994 (21, 68)
d 100000 0 0.0 100 int64 99.0 75.0 49.0 24.0 0.0 49.46308 9 0.98906 28.886459 0.003344 -1.200654 (42, 90)
e 100000 0 0.0 100 int64 99.0 75.0 49.0 25.0 0.0 49.55014 37 0.98911 28.834041 0.003987 -1.196103 (15, 59)
f 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.20195 4 0.98926 28.886463 0.009183 -1.203297 (72, 9)
g 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.62199 4 0.98919 28.849264 -0.012746 -1.199283 (69, 64)
h 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.58739 40 0.98917 28.83744 -0.004719 -1.193858 (30, 79)
i 100000 0 0.0 100 int64 99.0 75.0 49.0 24.0 0.0 49.41076 10 0.98939 28.910095 0.005218 -1.207459 (36, 54)
j 100000 0 0.0 100 int64 99.0 74.0 49.0 25.0 0.0 49.45686 46 0.98909 28.816681 0.004751 -1.190756 (29, 95)
k 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.54948 46 0.98914 28.806187 -0.003731 -1.196876 (32, 94)
l 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.45631 20 0.98923 28.921314 0.002344 -1.205342 (22, 91)
m 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.43142 49 0.98901 28.852962 0.002507 -1.198267 (94, 26)
n 100000 0 0.0 100 int64 99.0 75.0 50.0 24.0 0.0 49.49325 8 0.98931 28.899022 0.000698 -1.200786 (46, 50)
o 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.52091 4 0.98923 28.869563 -0.003987 -1.202426 (33, 13)
p 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.40997 61 0.98918 28.900207 0.007921 -1.204621 (58, 93)
q 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.62826 33 0.98936 28.831896 -0.003291 -1.201172 (82, 31)
r 100000 0 0.0 100 int64 99.0 75.0 50.0 24.0 0.0 49.47208 60 0.98925 28.873943 0.000515 -1.202925 (0, 26)
s 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.64847 48 0.9893 28.853741 -0.010258 -1.202701 (94, 37)
t 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.55305 32 0.98898 28.801028 -0.001721 -1.193403 (85, 10)
u 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.45428 80 0.98928 28.876812 0.002018 -1.201612 (56, 16)
v 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.59953 16 0.98945 28.891313 -0.006261 -1.199011 (60, 39)
w 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.34131 4 0.98915 28.925175 0.009523 -1.203308 (78, 96)
x 100000 0 0.0 100 int64 99.0 74.0 49.0 25.0 0.0 49.45791 95 0.98933 28.860322 0.007199 -1.198962 (93, 79)
y 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.58517 34 0.98929 28.765474 -0.000497 -1.193016 (80, 42)
z 100000 0 0.0 100 int64 99.0 74.0 50.0 24.0 0.0 49.44355 21 0.98876 28.85751 0.000819 -1.201063 (25, 25)

Large data training and testing set splitting functions

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

# split dataframe into training and testing sets

# return numpy.ndarray
from spinesUtils import train_test_split_bigdata
from spinesUtils.feature_tools import get_x_cols

X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
    df=df, 
    x_cols=get_x_cols(df, y_col='a'),
    y_col='a', 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)

print(X_train.shape, X_valid.shape, X_test.shape, y_train.shape, y_valid.shape, y_test.shape)
X_train[:5]
(80000, 25) (80000,) (10000, 25) (10000,) (10000, 25) (10000,)





array([[45, 83, 43, 94,  1, 86, 56,  0, 78, 60, 79, 42, 24, 43, 94, 83,
        45, 50, 59, 50, 17, 99, 40, 95, 70],
       [ 4, 81,  9, 25, 54, 18, 14,  6, 17, 39,  0, 36, 82, 33, 11, 76,
        92, 29, 33, 50, 44, 11, 87, 86, 31],
       [72, 82, 52, 96, 55, 89, 35, 71, 48, 73, 34, 19, 53, 89, 46, 57,
        84, 67, 10, 40, 50, 61, 10, 76, 84],
       [46, 45, 79, 53, 80, 85, 58, 65, 26, 49, 46, 97, 83, 47, 77, 97,
        26,  4, 33, 79, 36, 65, 50, 94, 87],
       [36,  7, 46, 10, 11, 33,  3,  7, 82, 29, 28,  2, 42, 89, 42, 66,
        79, 51, 49, 43, 63, 14, 13, 74, 26]])
# return pandas.DataFrame
from spinesUtils import train_test_split_bigdata_df
from spinesUtils.feature_tools import get_x_cols

train_df, valid_df, test_df = train_test_split_bigdata_df(
    df=df, 
    x_cols=get_x_cols(df, y_col='a'),
    y_col='a', 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)

print(train_df.shape, valid_df.shape, test_df.shape)
train_df.head()
(8000000, 26) (1000000, 26) (1000000, 26)
b c d e f g h i j k ... r s t u v w x y z a
0 14 67 41 87 68 87 27 67 26 62 ... 63 43 77 4 6 72 5 63 73 27
1 47 37 43 98 55 68 82 48 37 35 ... 99 92 23 44 92 14 54 95 58 59
2 52 97 71 62 18 54 22 2 57 93 ... 82 6 61 41 24 40 54 11 9 5
3 48 45 22 46 32 37 6 13 42 67 ... 9 1 65 84 11 86 54 22 89 85
4 26 23 55 31 61 72 68 82 6 19 ... 13 44 3 93 66 53 75 93 53 43

5 rows × 26 columns

# performances comparison
from sklearn.model_selection import train_test_split
from spinesUtils import train_test_split_bigdata, train_test_split_bigdata_df
from spinesUtils.feature_tools import get_x_cols

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 10000),
    'b': np.random.randint(0, 100, 10000),
    'c': np.random.randint(0, 100, 10000),
    'd': np.random.randint(0, 100, 10000),
    'e': np.random.randint(0, 100, 10000),
    'f': np.random.randint(0, 100, 10000),
    'g': np.random.randint(0, 100, 10000),
    'h': np.random.randint(0, 100, 10000),
    'i': np.random.randint(0, 100, 10000),
    'j': np.random.randint(0, 100, 10000),
    'k': np.random.randint(0, 100, 10000),
    'l': np.random.randint(0, 100, 10000),
    'm': np.random.randint(0, 100, 10000),
    'n': np.random.randint(0, 100, 10000),
    'o': np.random.randint(0, 100, 10000),
    'p': np.random.randint(0, 100, 10000),
    'q': np.random.randint(0, 100, 10000),
    'r': np.random.randint(0, 100, 10000),
    's': np.random.randint(0, 100, 10000),
    't': np.random.randint(0, 100, 10000),
    'u': np.random.randint(0, 100, 10000),
    'v': np.random.randint(0, 100, 10000),
    'w': np.random.randint(0, 100, 10000),
    'x': np.random.randint(0, 100, 10000),
    'y': np.random.randint(0, 100, 10000),
    'z': np.random.randint(0, 100, 10000),
})

# define a function to split a valid set for sklearn train_test_split
def train_test_split_sklearn(df, x_cols, y_col, shuffle, train_size, valid_size):
    X_train, X_test, y_train, y_test = train_test_split(df[x_cols], df[y_col], test_size=1-train_size, random_state=0, shuffle=shuffle)
    X_valid, X_test, y_valid, y_test = train_test_split(X_test, y_test, test_size=valid_size, random_state=0, shuffle=shuffle)
    return X_train, X_valid, X_test, y_train, y_valid, y_test

%timeit X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_sklearn(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, train_size=0.8, valid_size=0.5)
%timeit X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, return_valid=True, train_size=0.8, valid_size=0.5)
%timeit train_df, valid_df, test_df = train_test_split_bigdata_df(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, return_valid=True, train_size=0.8, valid_size=0.5)
1.28 ms ± 20.5 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
1.05 ms ± 14.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
1.36 ms ± 11.7 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

An intuitive timer

from spinesUtils.timer import Timer

# create a timer instance
timer = Timer()

# start the timer
timer.start()

# do something
for i in range(10):
    # timer sleep for 1 second
    timer.sleep(1)
    # print the elapsed time from last sleep
    print("Elapsed time: {} seconds".format(timer.last_timestamp_diff()))

# print the elapsed time
print("Total elapsed time: {} seconds".format(timer.total_elapsed_time()))

# stop the timer
timer.end()
Elapsed time: 1.0117900371551514 seconds
Elapsed time: 2.016140937805176 seconds
Elapsed time: 3.0169479846954346 seconds
Elapsed time: 4.0224690437316895 seconds
Elapsed time: 5.027086019515991 seconds
Elapsed time: 6.0309507846832275 seconds
Elapsed time: 7.035104036331177 seconds
Elapsed time: 8.040709972381592 seconds
Elapsed time: 9.042311906814575 seconds
Elapsed time: 10.046867847442627 seconds
Total elapsed time: 10.047839879989624 seconds





10.047943830490112
from spinesUtils.timer import Timer

# you can also use the timer as a context manager
t = Timer()
with t.session():
    t.sleep(1)
    print("Last step elapsed time:", round(t.last_timestamp_diff(), 2), 'seconds')
    t.middle_point()
    t.sleep(2)
    print("Last step elapsed time:", round(t.last_timestamp_diff(), 2), 'seconds')
    
    total_elapsed_time = t.total_elapsed_time()
    
print("Total Time:", round(total_elapsed_time, 2), 'seconds')
Last step elapsed time: 1.01 seconds
Last step elapsed time: 2.01 seconds
Total Time: 3.01 seconds