streamlit-image-annotation-customize

streamlit components for image annotation


Keywords
Python, Streamlit, React, JavaScript, image-annotation, streamlit-component
License
Apache-2.0
Install
pip install streamlit-image-annotation-customize==0.4.26

Documentation

Streamlit Image Annotation

Streamlit component for image annotation.

Streamlit App PyPI

Features

  • You can easily launch an image annotation tool using streamlit.
  • By customizing the pre- and post-processing, you can achieve your preferred annotation workflow.
  • Currently supports classification, detection, point detection tasks.
  • Simple UI that is easy to navigate.

Install

pip install streamlit-image-annotation

Example Usage

If you want to see other use cases, please check inside the examples folder.

from glob import glob
import pandas as pd
import streamlit as st
from streamlit_image_annotation import classification

label_list = ['deer', 'human', 'dog', 'penguin', 'framingo', 'teddy bear']
image_path_list = glob('image/*.jpg')
if 'result_df' not in st.session_state:
    st.session_state['result_df'] = pd.DataFrame.from_dict({'image': image_path_list, 'label': [0]*len(image_path_list)}).copy()

num_page = st.slider('page', 0, len(image_path_list)-1, 0)
label = classification(image_path_list[num_page], 
                        label_list=label_list, 
                        default_label_index=int(st.session_state['result_df'].loc[num_page, 'label']))

if label is not None and label['label'] != st.session_state['result_df'].loc[num_page, 'label']:
    st.session_state['result_df'].loc[num_page, 'label'] = label_list.index(label['label'])
st.table(st.session_state['result_df'])

API

classification(
    image_path: str,
    label_list: List[str],
    default_label_index: Optional[int] = None,
    height: int = 512,
    width: int = 512,
    key: Optional[str] = None
)
  • image_path: Image path.

  • label_list: List of label candidates.

  • default_label_index: Initial label index.

  • height: The maximum height of the displayed image.

  • width: The maximum width of the displayed image.

  • key: An optional string to use as the unique key for the widget. Assign a key so the component is not remount every time the script is rerun.

  • Component Value: {'label': label_name}

Example: example code

detection(
    image_path: str,
    label_list: List[str],
    bboxes: Optional[List[List[int, int, int, int]]] = None,
    labels: Optional[List[int]] = None,
    height: int = 512,
    width: int = 512,
    line_width: int = 5,
    use_space: bool = False,
    key: Optional[str] = None
)
  • image_path: Image path.

  • label_list: List of label candidates.

  • bboxes: Initial list of bounding boxes, where each bbox is in the format [x, y, w, h].

  • labels: List of label for each initial bbox.

  • height: The maximum height of the displayed image.

  • width: The maximum width of the displayed image.

  • line_width: The stroke width of the bbox.

  • use_space: Enable Space key for complete.

  • key: An optional string to use as the unique key for the widget. Assign a key so the component is not remount every time the script is rerun.

  • Component Value: [{'bbox':[x,y,width, height], 'label_id': label_id, 'label': label_name},...]

Example: example code

pointdet(
    image_path: str,
    label_list: List[str],
    points: Optional[List[List[int, int]]] = None,
    labels: Optional[List[int]] = None,
    height: int = 512,
    width: int = 512,
    point_width: int =3,
    use_space: bool = False,
    key: Optional[str] = None
)
  • image_path: Image path.

  • label_list: List of label candidates.

  • points: Initial list of points, where each point is in the format [x, y].

  • labels: List of label for each initial bbox.

  • height: The maximum height of the displayed image.

  • width: The maximum width of the displayed image.

  • point_width: The stroke width of the bbox.

  • use_space: Enable Space key for complete.

  • key: An optional string to use as the unique key for the widget. Assign a key so the component is not remount every time the script is rerun.

  • Component Value: [{'bbox':[x,y], 'label_id': label_id, 'label': label_name},...]

Example: example code

Future Work

  • Addition of component for segmentation task.

Development

setup

cd Streamlit-Image-Annotation/
export PYTHONPATH=$PWD

and set IS_RELEASE = False in Streamlit-Image-Annotation/__init__.py.

start frontend

git clone https://github.com/hirune924/Streamlit-Image-Annotation.git
cd Streamlit-Image-Annotation/streamlit_image_annotation/Detection/frontend
yarn
yarn start

start streamlit

cd Streamlit-Image-Annotation/
streamlit run streamlit_image_annotation/Detection/__init__.py

build

cd Streamlit-Image-Annotation/Classification/frontend
yarn build
cd Streamlit-Image-Annotation/Detection/frontend
yarn build
cd Streamlit-Image-Annotation/Point/frontend
yarn build

and set IS_RELEASE = True in Streamlit-Image-Annotation/__init__.py.

make wheel

python setup.py sdist bdist_wheel

upload

python3 -m twine upload --repository testpypi dist/*
python -m pip install --index-url https://test.pypi.org/simple/ --no-deps streamlit-image-annotation
twine upload dist/*