A trainer based on Pytorch


License
MIT
Install
pip install tortreinador==0.0.20

Documentation

Torch Terinador

A trainer based on pytorch including a train loop for MDN (Mixture Density Network), a data loader, plot line chart and a couple of techniques for avoid over fitting

Installation

This package needs Python>=3.7 and the version of Pytorch used in development is 1.13.1 and cuda11.2, considering the different version of cuda, the package will not install Pytorch automatically. You should check your cuda's version, install the suitable pytorch first. Then, run the command below:

pip install tortreinador 

Quick Start

from tortreinador.utils.plot import plot_line_2
from tortreinador.utils.preprocessing import load_data
from tortreinador.train import TorchTrainer, config_generator
from tortreinador.models.MDN import mdn, Mixture, NLLLoss
from tortreinador.utils.tools import xavier_init
from tortreinador.utils.View import init_weights, split_weights
import torch
import pandas as pd

data = pd.read_excel('')
data['M_total (M_E)'] = data['Mcore (M_J/10^3)'] + data['Menv (M_E)']

# Support index, e.g input_parameters = [0, 1, 2]
input_parameters = [
    'Mass (M_J)',
    'Radius (R_E)',
    'T_sur (K)',
]

output_parameters = [
    'M_total (M_E)',
    'T_int (K)',
    'P_CEB (Mbar)',
    'T_CEB (K)'
]
# Load Data, random status default as 42
t_loader, v_loader, test_x, test_y, s_x, s_y = load_data(data=data, input_parameters=input_parameters,
                                                         output_parameters=output_parameters,
                                                         if_normal=True, if_shuffle=True, batch_size=512, feature_range=(0, 1), if_double=True, n_workers=4)

model = mdn(len(input_parameters), len(output_parameters), 20, 512)
criterion = NLLLoss()
optim = torch.optim.Adam(xavier_init(model), lr=0.0001, weight_decay=0.001)

'''
    Overwrite function 'calculate' 
'''
# class Trainer(TorchTrainer):
#     def calculate(self, x, y, mode='t'):
#         x_o, x_n = x.chunk(2, dim=1)
        
#         pi, mu, sig = model(x_o, x_n)
        
#         loss = self.criterion(pi, mu, sig, y)
#         pdf = mixture(pi, mu, sig)
#         y_pred = pdf.sample()
        
#         metric_per = r2_score(y, y_pred)
        
#         return self._standard_return(loss=loss, metric_per=metric_per, mode=mode, y=y, y_pred=y_pred)

# trainer = Trainer(is_gpu=True, epoch=50, optimizer=optim, model=model, criterion=criterion)


trainer = TorchTrainer(is_gpu=True, epoch=50, optimizer=optim, model=model, criterion=criterion)

save_file_path = '/notebooks/DeepExo/Resource/MDN_ATTN_15_error/'
config = config_generator(save_file_path, warmup_epochs=5, best_metric=0.8, lr_milestones=[12, 22, 36, 67, 75, 89, 106], lr_decay_rate=0.7)
# Training
result = trainer.fit(t_loader, v_loader, **config)


# Plot line chart
result_pd = pd.DataFrame()
result_pd['epoch'] = len(result[0])
result_pd['train_r2_avg'] = result[4]
result_pd['val_r2_avg'] = result[3]

plot_line_2(y_1='train_r2_avg', y_2='val_r2_avg', df=result_pd, fig_size=(10, 6))

# If specify 'mode' in TorchTrainer as 'csv'
saved_result = pd.read_csv('/notebooks/DeepExo/train_log/log_202408280744.csv')
plot_line_2(y_1='train_loss', y_2='val_loss', df=saved_result)

Functions

Please visit https://ardentex.github.io/tortreinador/