QuickEcharts is a Python package that enables one to plot Echarts quickly. It piggybacks off of the pyecharts package that pipes into Apache Echarts. Pyecharts is a great package for fully customizing plots but is quite a challenge to make use of quickly. QuickEcharts solves this with a simple API for defining plotting elements and data, along with automatic data wrangling operations, using polars, to correctly structure data fast.
For the Code Examples below, there is a dataset in the QuickEcharts/datasets folder named FakeBevData.csv that you can download for replication purposes.
pip install QuickEcharts
or
pip install git+https://github.com/AdrianAntico/QuickEcharts.git#egg=quickecharts
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Area(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = None,
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
Opacity = 0.5,
GradientColor1 = '#e12191',
GradientColor2 = '#0926800d',
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Area Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 0.25,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Area(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
Opacity = 0.5,
GradientColor1 = '#c86589',
GradientColor2 = '#06a7ff0d',
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Area(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
Opacity = 0.5,
GradientColor1 = '#c86589',
GradientColor2 = '#06a7ff0d',
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Bar(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = None,
FacetCols = 1,
FacetRows = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
ShowLabels = False,
LabelPosition = "top",
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Bar Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = 'Daily Liters',
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = 'Date',
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 1,
LegendTextColor = "#lightgray",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Bar(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetCols = 1,
FacetRows = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Bar Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Bar(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetCols = 2,
FacetRows = 2,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Bar Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Bar3D(
dt = data,
PreAgg = False,
YVar = 'Brand',
XVar = 'Category',
ZVar = 'Daily Liters',
AggMethod = 'mean',
ZVarTrans = "logmin",
RenderHTML = False,
Theme = 'wonderland',
BarColors = ["#00b8ff", "#0097e1", "#0876b8", "#004fa7", "#012e6d"],
BackgroundColor = "#000",
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Bar3D Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.BoxPlot(
dt = data,
SampleSize = 100000,
YVar = 'Daily Liters',
GroupVar = 'Brand',
YVarTrans = "logmin",
RenderHTML = False,
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Box Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 42,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 1,
LegendTextColor = "lightgray",
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Copula(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
GroupVar = None,
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
AggMethod = 'mean',
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Copula Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = 'Daily Liters',
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = 'Daily Units',
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 1,
LegendTextColor = "lightgray",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Copula(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
GroupVar = 'Brand',
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'mean',
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Copula Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Copula(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
GroupVar = 'Brand',
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
AggMethod = 'mean',
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Copula Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Copula3D(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
ZVar = 'Daily Margin',
ColorMapVar = "ZVar",
AggMethod = 'mean',
RenderHTML = False,
RangeColor = ["red", "white", "blue"],
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Density(
dt = data,
SampleSize = 500000,
YVar = "Daily Liters",
GroupVar = None,
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
YVarTrans = "sqrt",
RenderHTML = False,
LineWidth = 2,
FillOpacity = 0.5,
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Density Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
XAxisTitle = 'Daily Liters',
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 0.25,
LegendTextColor = "lightgray",
VerticalLine = 5,
VerticalLineName = 'Line Name',
HorizontalLine = 225000,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Density(
dt = data,
SampleSize = 100000,
YVar = "Daily Liters",
GroupVar = 'Brand',
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
YVarTrans = "sqrt",
RenderHTML = False,
LineWidth = 2,
FillOpacity = 0.5,
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Density Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Donut(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
GroupVar = 'Brand',
AggMethod = 'count',
YVarTrans = "Identity",
RenderHTML = False,
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
Title = 'Donut Chart',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Legend = 'right',
LegendPosRight = '5%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "lightgray",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Funnel(
dt = data,
CategoryVar = ['Daily Units', 'Daily Revenue', 'Daily Margin', 'Daily Liters'],
ValuesVar = [100, 80, 60, 40],
RenderHTML = False,
SeriesLabel = "Funnel Data",
SortStyle = 'descending',
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
Title = "Funnel",
TitleColor = "lightgray",
TitleFontSize = 20,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 0.25,
LegendTextColor = "lightgray",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Funnel(
dt = data,
CategoryVar = ['Daily Units', 'Daily Revenue', 'Daily Margin', 'Daily Liters'],
ValuesVar = [100, 80, 60, 40],
RenderHTML = False,
SeriesLabel = "Funnel Data",
SortStyle = 'ascending',
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
Title = "Funnel",
TitleColor = "lightgray",
TitleFontSize = 20,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 0.25,
LegendTextColor = "lightgray",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Heatmap(
dt = data,
PreAgg = False,
YVar = 'Brand',
XVar = 'Category',
MeasureVar = 'Daily Liters',
AggMethod = 'mean',
MeasureVarTrans = "Identity",
RenderHTML = False,
ShowLabels = False,
LabelPosition = "top",
LabelColor = "#fff",
Theme = 'dark',
RangeColor = ["#5b5b5b5d", "#00c4ff", "#9cff00"],
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Heatmap',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 0.25,
LegendTextColor = "lightgray",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Histogram(
dt = data,
SampleSize = 100000,
YVar = "Daily Liters",
GroupVar = None,
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
YVarTrans = "logmin",
RenderHTML = True,
Theme = 'dark',
CategoryGap = "0%",
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Histogram',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
XAxisTitle = "Horray",
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'right',
LegendPosRight = '0%',
LegendPosTop = '15%',
LegendBorderSize = 0.25,
LegendTextColor = "lightgray",
VerticalLine = 10,
VerticalLineName = 'Line Name',
HorizontalLine = 40000,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "elasticOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Histogram(
dt = data,
SampleSize = 500000,
YVar = 'Daily Liters',
GroupVar = 'Brand',
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
YVarTrans = None,
RenderHTML = False
NumberBins = 20,
CategoryGap = "10%",
Theme = 'wonderland',
BackgroundColor = "#000",
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Histogram',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Line(
dt = data,
PreAgg = False,
YVar = ['Daily Liters', 'Daily Margin', 'Daily Revenue', 'Daily Units'],
XVar = 'Date',
GroupVar = None,
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
SmoothLine = True,
LineWidth = 2,
Symbol = None,
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = 'Date',
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'right',
LegendPosRight = '5%',
LegendPosTop = '15%',
LegendBorderSize = 1,
LegendTextColor = "lightgray",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Line(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
SmoothLine = True,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Line(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
SmoothLine = True,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Parallel(
dt = data,
SampleSize = 15000,
Vars = ['Daily Liters', 'Daily Units', 'Daily Revenue', 'Daily Margin'],
VarsTrans = ['logmin'] * 4,
RenderHTML = False,
SymbolSize = 6,
Opacity = 0.05,
LineWidth = 0.20,
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
Title = 'Parallel Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Pie(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
GroupVar = 'Brand',
AggMethod = 'count',
YVarTrans = None,
RenderHTML = False,
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
Title = 'Pie Chart',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Legend = "right",
LegendPosRight = '5%',
LegendPosTop = '5%',
LegendBorderSize = 0.25,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Radar(
dt = data,
YVar = ['Daily Liters', 'Daily Margin'],
GroupVar = 'Brand',
AggMethod = 'mean',
YVarTrans = None,
RenderHTML = False,
LabelColor = '#fff',
LineColors = ["#ed1690", "#8e5fa8", "#00a6fb", "#213f7f", "#22c0df"],
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
Title = 'Radar Chart',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Legend = 'right',
LegendPosRight = '2%',
LegendPosTop = '5%',
LegendBorderSize = 0.25,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.River(
dt = data,
PreAgg = False,
YVars = ['Daily Liters', 'Daily Units', 'Daily Revenue', 'Daily Margin'],
DateVar = 'Date',
GroupVar = None,
AggMethod = "sum",
YVarTrans = None,
RenderHTML = False,
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
AxisPointerType = "cross",
Title = "River Plot",
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Legend = 'right',
LegendPosRight = '5%',
LegendPosTop = '15%',
LegendBorderSize = 0.25,
LegendTextColor = "lightgray",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.River(
dt = data,
PreAgg = False,
YVars = 'Daily Liters',
DateVar = 'Date',
GroupVar = 'Brand',
AggMethod = "sum",
YVarTrans = None,
RenderHTML = False,
Theme = 'wonderland',
BackgroundColor = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Width = None,
Height = None,
AxisPointerType = "cross",
Title = "River Plot",
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Rosetype(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
GroupVar = 'Brand',
AggMethod = 'count',
YVarTrans = "Identity",
RenderHTML = False,
Type = "radius",
Radius = "55%",
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
Title = 'Rosetype Chart',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Legend = 'right',
LegendPosRight = '5%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "lightgray",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Scatter(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
GroupVar = None,
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'mean',
YVarTrans = "logmin",
XVarTrans = "logmin",
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Scatter Plot',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = 'Daily Liters',
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = 'Daily Units',
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = 'top',
LegendPosRight = '0%',
LegendPosTop = '2%',
LegendBorderSize = 1,
LegendTextColor = "lightgray",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Scatter(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
GroupVar = 'Brand',
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'mean',
YVarTrans = "Identity",
XVarTrans = "Identity",
RenderHTML = False,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Scatter Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Scatter(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
GroupVar = 'Brand',
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
AggMethod = 'mean',
YVarTrans = "Identity",
XVarTrans = "Identity",
RenderHTML = False,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Scatter Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Scatter3D(
dt = data,
SampleSize = 15000,
YVar = 'Daily Liters',
XVar = 'Daily Units',
ZVar = 'Daily Margin',
ColorMapVar = "ZVar",
AggMethod = 'mean',
YVarTrans = "logmin",
XVarTrans = "logmin",
ZVarTrans = "logmin",
RenderHTML = False,
SymbolSize = 6,
Theme = 'dark',
RangeColor = ["red", "white", "blue"],
BackgroundColor = None,
Width = "1200px",
Height = "750px",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.StackedArea(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
Opacity = 0.5,
LineWidth = 2,
Symbol = None,
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'dark',
BackgroundColor = None,
Width = "1200px",
Height = "750px",
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Stacked Area',
TitleColor = "lightgray",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = "right",
LegendPosRight = '2%',
LegendPosTop = '10%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.StackedBar(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Stacked Bar',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.StackedLine(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
SmoothLine = True,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Stacked Line',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.StackedStep(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Width = None,
Height = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Area Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Step(
dt = data,
PreAgg = False,
YVar = ['Daily Liters', 'Daily Margin', 'Daily Revenue', 'Daily Units'],
XVar = 'Date',
GroupVar = None,
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Height = None,
Width = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Step(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetRows = 1,
FacetCols = 1,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Height = None,
Width = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.Step(
dt = data,
PreAgg = False,
YVar = 'Daily Liters',
XVar = 'Date',
GroupVar = 'Brand',
FacetRows = 2,
FacetCols = 2,
FacetLevels = None,
TimeLine = False,
AggMethod = 'sum',
YVarTrans = "Identity",
RenderHTML = False,
LineWidth = 2,
Symbol = "emptyCircle",
SymbolSize = 6,
ShowLabels = False,
LabelPosition = "top",
Theme = 'wonderland',
BackgroundColor = None,
Height = None,
Width = None,
ToolBox = True,
Brush = True,
DataZoom = True,
Title = 'Line Plot',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
AxisPointerType = 'cross',
YAxisTitle = None,
YAxisNameLocation = 'middle',
YAxisNameGap = 70,
XAxisTitle = None,
XAxisNameLocation = 'middle',
XAxisNameGap = 42,
Legend = None,
LegendPosRight = '0%',
LegendPosTop = '5%',
LegendBorderSize = 1,
LegendTextColor = "#fff",
VerticalLine = None,
VerticalLineName = 'Line Name',
HorizontalLine = None,
HorizontalLineName = 'Line Name',
AnimationThreshold = 2000,
AnimationDuration = 1000,
AnimationEasing = "cubicOut",
AnimationDelay = 0,
AnimationDurationUpdate = 300,
AnimationEasingUpdate = "cubicOut",
AnimationDelayUpdate = 0)
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()
Click for code example
# Environment
import pkg_resources
import polars as pl
from QuickEcharts import Charts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = 'jupyter_lab'
# Pull Data from Package
FilePath = "..FakeBevData.csv"
data = pl.read_csv(FilePath)
# Create Plot in Jupyter Lab
p1 = Charts.WordCloud(
dt = data,
SampleSize = 100000,
YVar = 'Brand',
RenderHTML = False,
SymbolType = 'diamond',
Title = 'Word Cloud',
TitleColor = "#fff",
TitleFontSize = 20,
SubTitle = None,
SubTitleColor = "#fff",
SubTitleFontSize = 12,
Theme = 'wonderland')
# Needed to display
p1.load_javascript()
# In new cell
p1.render_notebook()