apstone

ai_power base stone


License
GPL-3.0
Install
pip install apstone==0.0.1

Documentation

Introduction

Base stone of AI_power, maintain all inference of AI_Power models.

Wrapper

  • Supply different model infer wrapper, including ONNX/TensorRT/Torch JIT;
  • Support onnx different Execution Providers (EP) , including cpu/gpu/trt/trt16/int8;
  • High level mmlab model (converted) infer wrapper, including MMPose/MMDet;

Model Convert

  • torch2jit torch2onnx etc.
  • detectron2 to onnx
  • modelscope to onnx
  • onnx2simple2trt
  • tf2pb2onnx

Model Tools

  • torch model edit
  • onnx model shape/speed test (different EP)
  • common scripts from onnxruntime

Usage

onnx model speed test

from apstone import ONNXModel

onnx_p = 'pretrain_models/sr_lib/realesr-general-x4v3-dynamic.onnx'
input_dynamic_shape = (1, 3, 96, 72)  # None
# cpu gpu trt trt16 int8
ONNXModel(onnx_p, provider='cpu', debug=True, input_dynamic_shape=input_dynamic_shape).speed_test()

Install

pip install apstone

Envs

Execution Providers Needs
cpu pip install onnxruntime
gpu pip install onnxruntime-gpu
trt/trt16/int8 onnxruntime-gpu compiled with tensorrt EP
TensorRT pip install tensorrt pycuda
torch JIT install pytorch