ccpi-regularisation-cupy

GPU-CuPy accelerated regularisation routines of CCPi-regularisation toolkit


Keywords
denoising, gpu, image-reconstruction, inverse-problems, iterative-reconstruction, reconstruction, regularisation, regularization, tomography
License
BSD-3-Clause
Install
pip install ccpi-regularisation-cupy==24.1.0

Documentation

CCPi-Regularisation Toolkit (CCPi-RGL)

Master Development Anaconda binaries
Build Status Build Status conda version conda last release conda platforms conda dowloads

Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with splitting algorithms, such as, ADMM and FISTA. Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.




Prerequisites:

  • MATLAB OR
  • Python (tested ver. 3.5/2.7); Cython
  • C compilers
  • nvcc (CUDA SDK) compilers

Package modules:

Single-channel (denoising):

  1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) 2D/3D CPU/GPU (Ref. 1)
  2. Fast-Gradient-Projection (FGP) Total Variation 2D/3D CPU/GPU (Ref. 2)
  3. Split-Bregman (SB) Total Variation 2D/3D CPU/GPU (Ref. 5)
  4. Total Generalised Variation (TGV) model for higher-order regularisation 2D/3D CPU/GPU (Ref. 6)
  5. Linear and nonlinear diffusion (explicit PDE minimisation scheme) 2D/3D CPU/GPU (Ref. 8)
  6. Anisotropic Fourth-Order Diffusion (explicit PDE minimisation) 2D/3D CPU/GPU (Ref. 9)
  7. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation 2D/3D CPU/GPU (Ref. 10,11)
  8. Nonlocal Total Variation regularisation (GS fixed point iteration) 2D CPU/GPU (Ref. 12)

Multi-channel (denoising):

  1. Fast-Gradient-Projection (FGP) Directional Total Variation 2D/3D CPU/GPU (Ref. 3,4,2)
  2. Total Nuclear Variation (TNV) penalty 2D+channels CPU (Ref. 7)

Inpainting:

  1. Linear and nonlinear diffusion (explicit PDE minimisation scheme) 2D/3D CPU (Ref. 8)
  2. Iterative nonlocal vertical marching method 2D CPU

Installation:

The package comes as a CMake project so you will need CMake (v.>=3) to configure it. Additionally you will need a C compiler, make (on linux) and CUDA SDK where available. The toolkit may be used directly from C/C++ as it is compiled as a shared library (check-out the include files in Core for this). We provide wrappers for Python and Matlab.

  1. Clone this repository to a directory, i.e. CCPi-Regularisation-Toolkit,
  2. create a build directory.
  3. Issue cmake to configure (or cmake-gui, or ccmake, or cmake3). Use additional flags to fine tune the configuration.

CMake flags

Flags used during configuration

CMake flag type meaning
BUILD_PYTHON_WRAPPER bool ON|OFF whether to build the Python wrapper
BUILD_MATLAB_WRAPPER bool ON|OFF whether to build the Matlab wrapper
CMAKE_INSTALL_PREFIX path your favourite install directory
PYTHON_DEST_DIR path python modules install directory (default ${CMAKE_INSTALL_PREFIX}/python)
MATLAB_DEST_DIR path Matlab modules install directory (default ${CMAKE_INSTALL_PREFIX}/matlab)
BUILD_CUDA bool ON|OFF whether to build the CUDA regularisers
CONDA_BUILD bool ON|OFF whether it is installed with setup.py install
Matlab_ROOT_DIR path Matlab directory
PYTHON_EXECUTABLE path /path/to/python/executable

Here an example of build on Linux (see also run.sh for additional info):

git clone https://github.com/vais-ral/CCPi-Regularisation-Toolkit.git
cd build
cmake .. -DCONDA_BUILD=OFF -DBUILD_MATLAB_WRAPPER=ON -DBUILD_PYTHON_WRAPPER=ON -DBUILD_CUDA=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
make install
cd install/python
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../lib

Python

Python binaries

Python binaries are distributed via the ccpi conda channel. Currently we produce packages for Linux64, Python 2.7, 3.5 and 3.6, NumPy 1.12 and 1.13.

conda install ccpi-regulariser -c ccpi -c conda-forge

Python (conda-build)

	export CIL_VERSION=0.10.4
	conda build Wrappers/Python/conda-recipe --numpy 1.12 --python 3.5 
	conda install ccpi-regulariser=${CIL_VERSION} --use-local --force
	cd demos/
	python demo_cpu_regularisers.py # to run CPU demo
	python demo_gpu_regularisers.py # to run GPU demo

Python build

If passed CONDA_BUILD=ON the software will be installed by issuing python setup.py install which will install in the system python (or whichever other python it's been picked up by CMake at configuration time.) If passed CONDA_BUILD=OFF the software will be installed in the directory pointed by ${PYTHON_DEST_DIR} which defaults to ${CMAKE_INSTALL_PREFIX}/python. Therefore this directory should be added to the PYTHONPATH.

If Python is not picked by CMake you can provide the additional flag to CMake -DPYTHON_EXECUTABLE=/path/to/python/executable.

Matlab

Matlab wrapper will install in the ${MATLAB_DEST_DIR} directory, which defaults to ${CMAKE_INSTALL_PREFIX}/matlab

If Matlab is not picked by CMake, you could add -DMatlab_ROOT_DIR=<Matlab directory>.

Linux

Because you've installed the modules in <your favourite install directory> you need to instruct Matlab to look in those directories:

PATH="/path/to/mex/:$PATH" LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH" matlab

By default /path/to/mex is ${CMAKE_INSTALL_PREFIX}/bin and /path/to/library/ is ${CMAKE_INSTALL_PREFIX}/lib

Windows

On Windows the dll and the mex modules must reside in the same directory. It is sufficient to add the directory at the beginning of the m-file.

addpath(/path/to/library);

Legacy Matlab installation (partly supported, please use Cmake)

	
	cd /Wrappers/Matlab/mex_compile
	compileCPU_mex.m % to compile CPU modules
	compileGPU_mex.m % to compile GPU modules (see instructions in the file)

References to implemented methods:

  1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.

  2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.

  3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.

  4. Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6) Results can be reproduced using the following SOFTWARE

  5. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.

  6. Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3), pp.492-526.

  7. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.

  8. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.

  9. Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), pp.177-191.

  10. Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.

  11. Kazantsev, D., Guo, E., Phillion, A.B., Withers, P.J. and Lee, P.D., 2017. Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data. Measurement Science and Technology, 28(9), p.094004.

  12. Abderrahim E., Lezoray O. and Bougleux S. 2008. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing." IEEE Trans. Image Processing 17(7), pp. 1047-1060.

References to Software:

  • If software is used, please refer to [11], however, the supporting publication is in progress.

Applications:

License:

Apache License, Version 2.0

Acknowledgments:

CCPi-RGL software is a product of the CCPi group and STFC SCD software developers. Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com