Conect2Py-Package is the name given for the Conect2ai Python software package. The package contains the implementation of TAC, an algorithm for data compression using TAC (Tiny Anomaly Compression). The TAC algorithm is based on the concept the data eccentricity and does not require previously established mathematical models or any assumptions about the underlying data distribution. Additionally, it uses recursive equations, which enables an efficient computation with low computational cost, using little memory and processing power.
Pandas, Numpy, Matplotlib, Seaborn, Scikit-learn, Ipython
pip install conect2py
If you want to install it locally you download the Wheel distribution from Build Distribution.
First navigate to the folder where you downloaded the file and run the following command:
pip install conect2py-0.1.1-py3-none-any.whl
This usage example can be run on a Colab Notebook here
To begin you can import conect2py
using
# FULL PACKAGE
import conect2py
Or try each of our implemented functionalities
# MODEL FUNCTIONS
from conect2py.models import TAC
from conect2py.models import AutoTAC
# RUN FUNCTIONS
from conect2py.run.single import print_run_details, run_single_online, run_single_offline
from conect2py.run.multiple import run_multiple_instances, get_optimal_params, display_multirun_optimal_values, run_optimal_combination
# UTILS FUNCTIONS
from conect2py.utils.format_save import create_param_combinations, create_compressor_list, create_eval_df
from conect2py.utils.metrics import get_compression_report, print_compression_report, calc_statistics
from conect2py.utils.plots import plot_curve_comparison, plot_dist_comparison, plot_multirun_metric_results
- Setting up the initial variables
model_name = 'TAC_Compression'
params = {
'window_size': np.arange(2, 30, 1),
'm': np.round(np.arange(0.1, 2.1, 0.1), 2),
}
param_combination = create_param_combinations(params)
compressor_list = create_compressor_list(param_combination)
- Once you created the list of compressors you can run
result_df = run_multiple_instances(compressor_list=compressor_list,
param_list=param_combination,
series_to_compress=dataframe['sensor_data'].dropna(),
cf_score_beta=2
)
- This function returns a pandas Dataframe containing the results of all compression methods. You can expect something like:
param | reduction_rate | reduction_factor | mse | rmse | nrmse | mae | psnr | ncc | cf_score | |
---|---|---|---|---|---|---|---|---|---|---|
0 | (2, 0.1) | 0.4507 | 1.8204 | 0.0648 | 0.2545 | 0.0609 | 0.0127 | 39.9824 | 0.9982 | 0.8031 |
1 | (2, 0.2) | 0.4507 | 1.8204 | 0.0648 | 0.2545 | 0.0609 | 0.0127 | 39.9823 | 0.9982 | 0.8031 |
2 | (2, 0.3) | 0.4507 | 1.8204 | 0.0648 | 0.2545 | 0.0609 | 0.0127 | 39.9823 | 0.9982 | 0.8031 |
3 | (2, 0.4) | 0.4508 | 1.8209 | 0.0648 | 0.2545 | 0.0609 | 0.0127 | 39.9824 | 0.9982 | 0.8032 |
4 | (2, 0.5) | 0.4511 | 1.8217 | 0.0648 | 0.2545 | 0.0609 | 0.0128 | 39.9823 | 0.9982 | 0.8033 |
- You can also check the optimal combination by running the following code:
display_multirun_optimal_values(result_df=result_df)
Parameter combinations for MAX CF_SCORE
param reduction_rate reduction_factor mse rmse nrmse \ 440 (24, 0.1) 0.9224 12.8919 0.6085 0.7801 0.1867 mae psnr ncc cf_score 440 0.1294 30.254 0.9825 0.9698
Parameter combinations for NEAR MAX CF_SCORE
param reduction_rate reduction_factor mse rmse nrmse \ 521 (28, 0.2) 0.9336 15.0531 1.1504 1.0726 0.2567 364 (20, 0.5) 0.9118 11.3396 0.9458 0.9725 0.2328 262 (15, 0.3) 0.8810 8.4029 0.6337 0.7960 0.1905 363 (20, 0.4) 0.9102 11.1352 0.9084 0.9531 0.2281 543 (29, 0.4) 0.9372 15.9222 1.1474 1.0712 0.2564 mae psnr ncc cf_score 521 0.1810 27.4883 0.9666 0.9598 364 0.1431 28.3388 0.9726 0.9598 262 0.0907 30.0780 0.9817 0.9598 363 0.1323 28.5140 0.9737 0.9603 543 0.1925 27.4996 0.9667 0.9607
- By default this plot returns a visualization for the metrics
reduction_rate
,ncc
andcf_score
.
plot_multirun_metric_results(result_df=result_df)
- The result should look like this;
- You don't need to run the visualization and the
display_multirun_optimal_values
in order to get the optimal compressor created, by running the following code it's possible to get the best result:
optimal_param_list = get_optimal_params(result_df=result_df)
print("Best compressor param combination: ", optimal_param_list)
- With the list of optimal parameter (There is a possibility that multiple compressors are considered the best) run the function below to get get the compression result.
points_to_keep, optimal_results_details = run_optimal_combination(optimal_list=optimal_param_list,
serie_to_compress=dataframe['sensor_data'].dropna(),
model='TAC'
)
- If you want to see the result details use:
print_run_details(optimal_results_details)
POINTS:
- total checked: 30889
- total kept: 1199
- percentage discaded: 96.12 %
POINT EVALUATION TIMES (ms):
- mean: 0.003636738161744472
- std: 0.15511020000857362
- median: 0.0
- max: 13.513565063476562
- min: 0.0
- total: 112.335205078125
RUN TIME (ms):
- total: 124.2864
- Now, to finish the process of the compression, you should follow the next steps:
1. Step - Create the evaluation dataframe:
evaluation_df = create_eval_df(original=dataframe['sensor_data'].dropna(), flag=points_to_keep)
evaluation_df.info()
2. Step - Evaluate the performance:
report = get_compression_report(
original=evaluation_df['original'],
compressed=evaluation_df['compressed'],
decompressed=evaluation_df['decompressed'],
cf_score_beta=2
)
print_compression_report(
report,
model_name=model_name,
cf_score_beta=2,
model_params=optimal_param_list
)
After that you expect to see something like the following informations:
RUN INFO
- Model: TAC_Compression
- Optimal Params: [(24, 0.1)]
- CF-Score Beta: 2
RESULTS
SAMPLES NUMBER reduction
- Original length: 30889 samples
- Reduced length: 1199 samples
- Samples reduced by a factor of 25.76 times
- Sample reduction rate: 96.12%
FILE SIZE compression
- Original size: 385549 Bytes
- Compressed size: 14974 Bytes
- file compressed by a factor of 25.75 times
- file compression rate: 96.12%
METRICS
- MSE: 0.622
- RMSE: 0.7886
- NRMSE: 0.1888
- MAE: 0.1384
- PSNR: 30.1591
- NCC: 0.9821
- CF-Score: 0.9778
3. Step - Create the model visualizations:
# plot the curves comparison (original vs decompressed)
plot_curve_comparison(
evaluation_df.original,
evaluation_df.decompressed,
show=True
)
And finally here is a example of the result:
Please check the informations for more information about the other models been implemented in this package.
-
Signoretti, G.; Silva, M.; Andrade, P.; Silva, I.; Sisinni, E.; Ferrari, P. "An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity". Sensors 2021, 21, 4153. https://doi.org/10.3390/s21124153
-
Medeiros, T.; Amaral, M.; Targino, M; Silva, M.; Silva, I.; Sisinni, E.; Ferrari, P.; "TinyML Custom AI Algorithms for Low-Power IoT Data Compression: A Bridge Monitoring Case Study" - 2023 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), 2023. 10.1109/MetroInd4.0IoT57462.2023.10180152
This package is licensed under the MIT License - © 2023 Conect2ai.