Customer segmentation toolkit
Data transformations toolkit made by Team #2 for the MLOps Engineering Lab #2 "Feature Store for ML".
-
Git repo: https://github.com/artemlops/customer-segmentation-toolkit
-
Documentation: https://artemlops.github.io/customer-segmentation-toolkit/
-
Original notebook: Customer segmentation by F. Daniel (September 2017) (saved to
data/customer-segmentation.ipynb
). -
Original dataset: E-Commerce data: Actual transactions from UK retailer (saved to
data/data.csv
). -
The work is done with the help of the nbdev tool, which allows you to develop a python library in Jupyter Notebooks, putting all your code, tests and documentation in one place.
Installation
pip install -U customer-segmentation-toolkit
Usage
import pandas as pd
from pathlib import Path
01. Load and split dataset
import datetime
from customer_segmentation_toolkit.load_split import load_data_csv, split_by_invoice_date
ONLINEOFFLINE_DATE_SPLIT = datetime.date(2011,10,1)
# Loading original dataset
df = load_data_csv('../data/data.csv')
print(f'Loaded dataset, shape: {df.shape}')
# Splitting dataset to offline and online parts
df_offline, df_online = split_by_invoice_date(df, ONLINEOFFLINE_DATE_SPLIT)
print(f'Offline dataset shape: {df_offline.shape}')
print(f'Offline invoices: from {df_offline["InvoiceDate"].min()} to {df_offline["InvoiceDate"].max()}')
print(f'Online dataset shape: {df_online.shape}')
print(f'Online invoices: from {df_online["InvoiceDate"].min()} to {df_online["InvoiceDate"].max()}')
Loaded dataset, shape: (541909, 8)
Offline dataset shape: (370931, 8)
Offline invoices: from 2010-12-01 08:26:00 to 2011-09-30 17:22:00
Online dataset shape: (170978, 8)
Online invoices: from 2011-10-02 10:32:00 to 2011-12-09 12:50:00
# Saving processed data
OUTPUT = Path(f'../data/output/01_data_split_offline_online')
OUTPUT.mkdir(exist_ok=True, parents=True)
df_offline.to_csv(f'{OUTPUT}/no_live_data.csv', index=False)
df_online.to_csv(f'{OUTPUT}/raw_live_data.csv', index=False)
Path(f'{OUTPUT}/onlineoffline_date_split.txt').write_text(str(ONLINEOFFLINE_DATE_SPLIT))
print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/01_data_split_offline_online: ['onlineoffline_date_split.txt', 'no_live_data.csv', 'raw_live_data.csv']
02. Clean dataset rows
from customer_segmentation_toolkit.load_split import load_data_csv
from customer_segmentation_toolkit.clean_rows import clean_data_rows
# Loading raw offline dataset'
df = load_data_csv('../data/output/01_data_split_offline_online/no_live_data.csv')
print(f'Loaded raw offline dataset, shape: {df.shape}')
# Cleaning the dataset
df_cleaned = clean_data_rows(df)
print(f'Cleaned offline dataset shape: {df.shape}')
Loaded raw offline dataset, shape: (370931, 8)
Cleaned offline dataset shape: (370931, 8)
# Saving processed data
OUTPUT = Path(f'../data/output/02_data_clean_rows')
OUTPUT.mkdir(exist_ok=True, parents=True)
df_cleaned.to_csv(f'{OUTPUT}/no_live_data__cleaned.csv', index=False)
print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/02_data_clean_rows: ['no_live_data__cleaned.csv']
03. Analyse purchases
import datetime
from customer_segmentation_toolkit.load_split import load_data_csv
from customer_segmentation_toolkit.analyse_purchases import build_product_list
N_PURCHASE_CLUSTERS = 5
TRAINTEST_DATE_SPLIT = datetime.date(2011,8,1)
# Loading cleaned dataset
df_cleaned = load_data_csv('../data/output/02_data_clean_rows/no_live_data__cleaned.csv')
print(f'Loaded cleaned offline dataset, shape: {df_cleaned.shape}')
list_products = build_product_list(df_cleaned)
print(f'Built list of products:')
print(pd.DataFrame(list_products).head())
print('...')
Loaded cleaned offline dataset, shape: (263815, 10)
Built list of products:
0 1
0 heart 251
1 vintage 195
2 set 194
3 bag 158
4 box 147
...
from customer_segmentation_toolkit.analyse_purchases import build_keywords_matrix
# Building keywords count matrix
THRESHOLD = [0, 1, 2, 3, 5, 10]
matrix = build_keywords_matrix(df_cleaned, list_products, THRESHOLD)
print(f'Built keywords count matrix (shape: {matrix.shape}):')
print(matrix.head())
Built keywords count matrix (shape: (3662, 188)):
heart vintage set bag box glass christmas design candle flower \
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0
... medium hen wallet point 0<.<1 1<.<2 2<.<3 3<.<5 5<.<10 .>10
0 ... 0 0 0 0 0 0 1 0 0 0
1 ... 0 0 0 0 0 0 0 1 0 0
2 ... 0 0 0 0 0 0 0 1 0 0
3 ... 0 0 0 0 0 0 0 1 0 0
4 ... 0 0 0 0 0 0 0 1 0 0
[5 rows x 188 columns]
from customer_segmentation_toolkit.analyse_purchases import compute_purchase_clusters
# Computing purchases clusters via Kmeans
clusters = compute_purchase_clusters(matrix, N_PURCHASE_CLUSTERS)
print(f'Built purchase clusters:')
print(pd.Series(clusters).value_counts())
Built purchase clusters:
1 1117
4 911
0 638
2 566
3 430
dtype: int64
from sklearn.metrics import silhouette_samples, silhouette_score
from customer_segmentation_toolkit.analyse_purchases import plot_silhouette
silhouette_avg = silhouette_score(matrix, clusters)
sample_silhouette_values = silhouette_samples(matrix, clusters)
# Plotting silhouette values
plot_silhouette(N_PURCHASE_CLUSTERS, [-0.07, 0.33], len(matrix), sample_silhouette_values, clusters)
from customer_segmentation_toolkit.analyse_purchases import add_purchase_clusters_info
# Constructing the result DataFrame
df_with_clusters = add_purchase_clusters_info(df_cleaned, clusters, N_PURCHASE_CLUSTERS)
print(f'Added purchase clusters info to the offline cleaned dataset:')
print(f'Shape: {df_with_clusters.shape}')
print(f'Columns: {list(df_with_clusters.columns)}')
Added purchase clusters info to the offline cleaned dataset:
Shape: (13081, 9)
Columns: ['CustomerID', 'InvoiceNo', 'Basket Price', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4', 'InvoiceDate']
from customer_segmentation_toolkit.load_split import split_by_invoice_date
# Splitting the new dataset (offline + cluster info) to train+test
df_offline_train, df_offline_test = split_by_invoice_date(df_with_clusters, TRAINTEST_DATE_SPLIT)
print(f'Splitted: train of shape {df_offline_train.shape} + test of shape {df_offline_test.shape}')
Splitted: train of shape (10054, 9) + test of shape (3027, 9)
# Saving processed data
OUTPUT = Path(f'../data/output/03_data_compute_description_keywords')
OUTPUT.mkdir(exist_ok=True, parents=True)
matrix.to_csv(f'{OUTPUT}/no_live_data__cleaned__keywords.csv', index=False)
df_offline_train.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__train.csv', index=False)
df_offline_test.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__test.csv', index=False)
pd.DataFrame(THRESHOLD, columns=['threshold']).to_csv(f'{OUTPUT}/threshold.csv', index=False)
Path(f'{OUTPUT}/n_purchase_clusters.txt').write_text(str(N_PURCHASE_CLUSTERS))
Path(f'{OUTPUT}/traintest_date_split.txt').write_text(str(TRAINTEST_DATE_SPLIT))
print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/03_data_compute_description_keywords: ['no_live_data__cleaned__keywords.csv', 'no_live_data__cleaned__purchase_clusters__test.csv', 'threshold.csv', 'n_purchase_clusters.txt', 'traintest_date_split.txt', 'no_live_data__cleaned__purchase_clusters__train.csv']
04. Analyse customer categories
from customer_segmentation_toolkit.load_split import load_data_csv
N_CUSTOMER_CLUSTERS = 11
SELECTED_CUSTOMERS_CATEG_THRESHOLD = 40
# Loading cleaned offline train dataset
DATA = '../data/output/03_data_compute_description_keywords'
N_PURCHASE_CLUSTERS = int(Path(f'{DATA}/n_purchase_clusters.txt').read_text().strip())
basket_price = load_data_csv(f'{DATA}/no_live_data__cleaned__purchase_clusters__train.csv')
print(f'Loaded purchase clusters data of shape: {basket_price.shape}')
print(basket_price.head())
print('...')
Loaded purchase clusters data of shape: (10054, 9)
CustomerID InvoiceNo Basket Price categ_0 categ_1 categ_2 categ_3 \
0 12347 537626 711.79 83.40 187.20 293.35 124.44
1 12347 542237 475.39 53.10 168.75 169.20 0.00
2 12347 549222 636.25 71.10 369.15 115.00 0.00
3 12347 556201 382.52 78.06 74.40 168.76 19.90
4 12348 539318 892.80 0.00 414.00 0.00 0.00
categ_4 InvoiceDate
0 23.40 2010-12-07 14:57:00.000001024
1 84.34 2011-01-26 14:29:59.999999744
2 81.00 2011-04-07 10:42:59.999999232
3 41.40 2011-06-09 13:01:00.000000256
4 478.80 2010-12-16 19:09:00.000000000
...
from customer_segmentation_toolkit.analyse_customers import build_transactions_per_user
# Building transactions per user
transactions_per_user = build_transactions_per_user(basket_price, n_purchase_clusters=N_PURCHASE_CLUSTERS)
print(f'Built transactions per user, shape: {transactions_per_user.shape}')
print(transactions_per_user.head())
print('...')
Built transactions per user, shape: (3143, 13)
CustomerID count min max mean sum categ_0 \
0 12347 4 382.52 711.79 551.487500 2205.95 12.949523
1 12348 3 227.44 892.80 495.746667 1487.24 0.000000
2 12350 1 334.40 334.40 334.400000 334.40 27.900718
3 12352 4 144.35 840.30 360.370000 1441.48 3.683714
4 12353 1 89.00 89.00 89.000000 89.00 19.887640
categ_1 categ_2 categ_3 categ_4 LastPurchase FirstPurchase
0 36.242889 33.831682 6.543213 10.432693 52 236
1 54.059869 0.000000 0.000000 45.940131 117 227
2 60.406699 0.000000 0.000000 11.692584 179 179
3 77.977495 5.771846 11.859339 0.707606 131 165
4 13.033708 0.000000 67.078652 0.000000 73 73
...
from customer_segmentation_toolkit.analyse_customers import (
plot_customers_pca,
convert_customers_df_to_np,
analyse_customers_pca,
)
# Analysing customers distribution via PCA
matrix = convert_customers_df_to_np(transactions_per_user, N_PURCHASE_CLUSTERS)
scaled_matrix, pca = analyse_customers_pca(matrix)
plot_customers_pca(matrix, pca)
from customer_segmentation_toolkit.analyse_customers import compute_customer_clusters
# Computing customers clusters via Kmeans
clusters_clients = compute_customer_clusters(scaled_matrix, N_CUSTOMER_CLUSTERS)
print('Computed customers clusters via Kmeans:')
display(pd.Series(clusters_clients).value_counts())
Computed customers clusters via Kmeans:
7 1186
6 475
0 305
3 276
8 239
9 235
1 226
4 152
2 32
5 10
10 7
dtype: int64
from sklearn.metrics import silhouette_samples, silhouette_score
from customer_segmentation_toolkit.analyse_purchases import plot_silhouette
silhouette_avg = silhouette_score(scaled_matrix, clusters_clients)
sample_silhouette_values = silhouette_samples(scaled_matrix, clusters_clients)
# Plotting silhouette values
plot_silhouette(N_CUSTOMER_CLUSTERS, [-0.15, 0.55], len(scaled_matrix), sample_silhouette_values, clusters_clients)
from customer_segmentation_toolkit.analyse_customers import plot_customer_categories
# Plotting customers categories
plot_customer_categories(scaled_matrix, clusters_clients, N_CUSTOMER_CLUSTERS)
from customer_segmentation_toolkit.analyse_customers import add_customer_clusters_info
# Constructing the result dataset
merged_df = add_customer_clusters_info(transactions_per_user, clusters_clients)
print(f'Constructed the result dataset:')
print(f'Shape: {merged_df.shape}')
print(f'Columns: {list(merged_df.columns)}')
Constructed the result dataset:
Shape: (3143, 14)
Columns: ['CustomerID', 'count', 'min', 'max', 'mean', 'sum', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4', 'LastPurchase', 'FirstPurchase', 'cluster']
from customer_segmentation_toolkit.analyse_customers import compute_aggregated_customer_clusters_info
# Constructing the aggregated cluster info dataset
selected_customers_df = compute_aggregated_customer_clusters_info(merged_df, N_PURCHASE_CLUSTERS, N_CUSTOMER_CLUSTERS,
categ_threshold=SELECTED_CUSTOMERS_CATEG_THRESHOLD)
print('Constructed the aggregated cluster info:')
print(f'Shape: {selected_customers_df.shape}')
print(f'Columns: {list(selected_customers_df.columns)}')
Constructed the aggregated cluster info:
Shape: (11, 14)
Columns: ['cluster', 'count', 'min', 'max', 'mean', 'sum', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4', 'LastPurchase', 'FirstPurchase', 'size']
# Saving processed data
OUTPUT = Path(f'../data/output/04_data_analyse_customers')
OUTPUT.mkdir(exist_ok=True, parents=True)
selected_customers_df.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__train__selected_customers_aggregated.csv', index=False)
merged_df.to_csv(f'{OUTPUT}/no_live_data__cleaned__purchase_clusters__train__customer_clusters.csv', index=False)
Path(f'{OUTPUT}/n_customer_clusters.txt').write_text(str(N_CUSTOMER_CLUSTERS))
print(f'Output data saved to {OUTPUT}: {[p.name for p in Path(OUTPUT).iterdir()]}')
Output data saved to ../data/output/04_data_analyse_customers: ['n_customer_clusters.txt', 'no_live_data__cleaned__purchase_clusters__train__selected_customers_aggregated.csv', 'no_live_data__cleaned__purchase_clusters__train__customer_clusters.csv']
05. Download dataset and use it for training
from customer_segmentation_toolkit.data_zoo import download_data_csv
from sklearn.model_selection import train_test_split
# Download dataset from the data_zoo:
csv = 'no_live_data__cleaned__purchase_clusters__train__customer_clusters.csv'
selected_customers: pd.DataFrame = download_data_csv(f'data/output/04_data_analyse_customers/{csv}')
X = selected_customers[['mean', 'categ_0', 'categ_1', 'categ_2', 'categ_3', 'categ_4' ]]
Y = selected_customers['cluster']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size = 0.8)
X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
((2514, 6), (629, 6), (2514,), (629,))