Utilities for working with the FX Platform


Keywords
ferris-platform
License
Apache-2.0
Install
pip install ferris-cli==2.9.5

Documentation

Ferris Cli

Downloads

The following library simplifies the process of

  • forwarding Metrics and Task to a Kafka consumer.
  • storing and retreiving application properties on the Ferris Platform
  • setting up scheduler actions from within the Ferris Platform

SEE WIKI FOR MORE DETAILS

Version 2 ferris_cli.v2 is released!

Usage

from ferris_cli.v2 import ApplicationConfigurator, FerrisEvents, FerrisLogging

Features

Configuration

ApplicationConfigurator is used for fetching configuration from consul.

from ferris_cli.v2 import ApplicationConfigurator

config = ApplicationConfigurator().get(config_key="some.config.key")

config_key -> name of the Consul key to be retreived

If config_key is not provided value of env variable APP_NAME will be used instead of it and fetched configuration will be merged with os.environ dict.

Events

FerrisEvents class can be used for sending events in a standardized format that is used by all services.

from ferris_cli.v2 import FerrisEvents

FerrisEvents().send(
    event_type="some.event.type",
    event_source="some.event.source",
    data=dict(
        key_1="value_1",
        key_2="value_2"
    ),
    topic="events.topic",
    reference_id='somerefid'
)
key required description
event_type yes Type of the event that will be sent
event_source yes Source of the event (e.g. service name)
data yes Dictionary with data that should be sent with event
topic no Name of the Kafka topic to which event will be sent. If not provided DEFAULT_TOPIC configuration value will be used.
reference_id no Custom value that can be sent with event and used for identification of chained events.

Minio handler

from ferris_cli.v2.services.storage import MinioService

config = {
    "MINIO_HOST": "localhost",
    "MINIO_ACCESS_KEY": "someaccesskey",
    "MINIO_SECRET_KEY": "somesupersecretkey",
    "MINIO_SECURE_CONNECTION": False
}

minio_service = MinioService(config)

# retreive lis of all buckets
buckets = minio_service.get_buckets()

# retreive single bucket by name, if exists
bucket = minio_service.get_bucket_by_name(bucket_name="somebucket")

# create object in bucket
uploaded_file_name, file_hash = minio_service.create_object(file=fileobject, bucket_name="somebucket", supported_extensions=["txt", "json"])

# retreive list of all objects within bucket
minio_service.get_all_from_bucket(bucket_name="somebucket")

# retreive number of objects within bucket
minio_service.get_number_of_objects_in_bucket(bucket_name="somebucket")

# create bucket
minio_service.create_bucket(bucket_name="somebucket")

# delete bucket
minio_service.delete_bucket(bucket_name="somebucket")

# download object from bucket to local /tmp dir
minio_service.download_file(filename="nameofthefile.txt", bucket="somebucket")

# delete object from bucket
minio_service.delete_object(bucket_name="somebucket", object_name="someobjectname")

# copy object from one bucket to another
minio_service.copy_file(source_bucket="sourcebucketname", source_object="sourceobjectname", dest_bucket="destinationbucketname", dest_object="destinationobjectname")

# move object from one bucket to another
minio_service.move(source_bucket="sourcebucketname", source_object="sourceobjectname", dest_bucket="destinationbucketname", dest_object="destinationobjectname")

Logging handler

Wrapper around python logging with ability to send logs to Kafka stream (default behaviour).

from ferris_cli.v2 import FerrisLogging

logging = FerrisLogging().get_logger(name="SomeName", use_colors=True)
logging.debug("debug msg")
logging.info("info msg")
logging.error("error msg")
logging.warning("warning msg")
logging.critical("critical msg")

FerrisLogging().get_logger(name="SomeName", use_colors=True)

key required description
name yes name of the logger
use_colors no if set to True logging output will be colorized (DEBUG: green, INFO: cyan, WARNING: yellow, ERROR: red, CRITICAL: red bold)