few-shot-learning-nlp

This library provides tools and utilities for Few Shot Learning in Natural Language Processing (NLP).


License
MIT
Install
pip install few-shot-learning-nlp==1.0.1

Documentation

few-shot-learning-nlp

This library provides tools and utilities for Few Shot Learning in Natural Language Processing (NLP).

Overview

Few Shot Learning in NLP involves training and evaluating models on tasks with limited labeled data. This library offers functionalities to facilitate this process.

Installation

You can install this library via pip:

pip install -U few-shot-learning-nlp

Documentation

The documentation for this library is available here.

Supported Approaches

Text Classification

  • Sentence Transformers Finetuning (SetFit)
  • Pattern Exploiting Training (PET)

Named Entity Recognition for Image Documents

Classification Utils

Usage

To utilize this library, import the necessary classes and methods and follow the provided documentation for each component.

Here is a short example of the SetFit implementation

from datasets import load_dataset
import pandas as pd
from few_shot_learning_nlp.utils import stratified_train_test_split
from torch.utils.data import DataLoader
from few_shot_learning_nlp.few_shot_text_classification.setfit_dataset import SetFitDataset

# Load a dataset for text classification
ag_news_dataset = load_dataset("ag_news")

# Extract necessary information from the dataset
num_classes = len(ag_news_dataset['train'].features['label'].names)

# Perform few-shot learning by selecting a limited number of classes
n_shots = 50
train_validation, test_df = stratified_train_test_split(ag_news_dataset['train'], num_shots_per_class=n_shots)
train_df, val_df = stratified_train_test_split(pd.DataFrame(train_validation), num_shots_per_class=30)

# Create SetFitDataset objects for training and validation
set_fit_data_train = SetFitDataset(train_df['text'], train_df['label'], input_example_format=True)
set_fit_data_val = SetFitDataset(val_df['text'], val_df['label'], input_example_format=False)

# Create DataLoader objects for training and validation datasets
train_dataloader = DataLoader(set_fit_data_train.data, shuffle=False)
val_dataloader = DataLoader(set_fit_data_val)

Defining Classifier

import torch

class CLF(torch.nn.Module):
    def __init__(
        self,
        in_features : int,
        out_features : int, 
        *args, 
        **kwargs
    ) -> None:
        super().__init__(*args, **kwargs)

        self.layer1 = torch.nn.Linear(in_features, 128)
        self.relu = torch.nn.ReLU()
        self.layer2 = torch.nn.Linear(128, 32)
        self.layer3 = torch.nn.Linear(32, out_features)

    def forward(self, x : torch.Tensor):
        x = self.layer1(x)
        x = self.relu(x)
        x = self.layer2(x)
        x = self.relu(x)
        return self.layer3(x)

Training the Embedding Model

import torch
from sentence_transformers import SentenceTransformer
from few_shot_learning_nlp.few_shot_text_classification.setfit import SetFitTrainer

# Load a pre-trained Sentence Transformer model
model = SentenceTransformer("whaleloops/phrase-bert")

# Initialize the SetFitTrainer with embedding model and classifier
embedding_model = model.to("cuda")
in_features = embedding_model.get_sentence_embedding_dimension()
clf = CLF(in_features, num_classes).to("cuda")
trainer = SetFitTrainer(embedding_model, clf, num_classes)

# Train the embedding model
trainer.train_embedding(train_dataloader, val_dataloader, n_epochs=10)

Training the Classifier Model

# Shuffle training data
_, class_counts = np.unique(train_df['label'], return_counts=True)
X_train_shuffled, y_train_shuffled = shuffle_two_lists(train_df['text'], train_df['label'])

# Train the classifier
history, embedding_model, clf = trainer.train_classifier(
    X_train_shuffled, y_train_shuffled, val_df['text'], val_df['label'],
    clf=CLF(in_features, num_classes),
    n_epochs=15,
    lr=1e-4
)

Testing the Models

y_true, y_pred = trainer.test(test_df)