KerasAug is a library that includes Keras 3 preprocessing and augmentation layers, providing support for various data types such as images, labels, bounding boxes, segmentation masks, and more.
Note
See docs/*.py
for the GIF generation. YOLOV8-like pipeline for bounding boxes and segmentation masks.
KerasAug aims to provide fast, robust and user-friendly preprocessing and augmentation layers, facilitating seamless integration with Keras 3 and tf.data
.
The APIs largely follow torchvision
, and the correctness of the layers has been verified through unit tests.
Also, you can check out the demo app on HF: App here:
- π Supports many preprocessing & augmentation layers across all backends (JAX, TensorFlow and Torch).
- π§° Seamlessly integrates with
tf.data
, offering a performant and scalable data pipeline. - π₯ Follows the same API design as
torchvision
. - π Depends only on Keras 3.
pip install keras keras-aug -U
Important
Make sure you have installed a supported backend for Keras.
import keras
import tensorflow as tf
import tensorflow_datasets as tfds
from keras_aug import layers as ka_layers
BATCH_SIZE = 64
NUM_CLASSES = 3
INPUT_SIZE = (128, 128)
# Create a `tf.data.Dataset`-compatible preprocessing pipeline.
# Note that this example works with all backends.
train_dataset, validation_dataset = tfds.load(
"rock_paper_scissors", as_supervised=True, split=["train", "test"]
)
train_dataset = (
train_dataset.batch(BATCH_SIZE)
.map(
lambda images, labels: {
"images": tf.cast(images, "float32") / 255.0,
"labels": tf.one_hot(labels, NUM_CLASSES),
}
)
.map(ka_layers.vision.Resize(INPUT_SIZE))
.shuffle(128)
.map(ka_layers.vision.RandAugment())
.map(ka_layers.vision.CutMix(num_classes=NUM_CLASSES))
.map(ka_layers.vision.Rescale(scale=2.0, offset=-1)) # [0, 1] to [-1, 1]
.map(lambda data: (data["images"], data["labels"]))
.prefetch(tf.data.AUTOTUNE)
)
validation_dataset = (
validation_dataset.batch(BATCH_SIZE)
.map(
lambda images, labels: {
"images": tf.cast(images, "float32") / 255.0,
"labels": tf.one_hot(labels, NUM_CLASSES),
}
)
.map(ka_layers.vision.Resize(INPUT_SIZE))
.map(ka_layers.vision.Rescale(scale=2.0, offset=-1)) # [0, 1] to [-1, 1]
.map(lambda data: (data["images"], data["labels"]))
.prefetch(tf.data.AUTOTUNE)
)
# Create a model using MobileNetV2 as the backbone.
backbone = keras.applications.MobileNetV2(
input_shape=(*INPUT_SIZE, 3), include_top=False
)
backbone.trainable = False
inputs = keras.Input((*INPUT_SIZE, 3))
x = backbone(inputs)
x = keras.layers.GlobalAveragePooling2D()(x)
outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x)
model = keras.Model(inputs, outputs)
model.summary()
model.compile(
loss="categorical_crossentropy",
optimizer=keras.optimizers.SGD(learning_rate=1e-3, momentum=0.9),
metrics=["accuracy"],
)
# Train and evaluate your model
model.fit(train_dataset, validation_data=validation_dataset, epochs=8)
model.evaluate(validation_dataset)
The above example runs with all backends (JAX, TensorFlow, Torch).
gradio deploy
@misc{chiu2023kerasaug,
title={KerasAug},
author={Hongyu, Chiu},
year={2023},
howpublished={\url{https://github.com/james77777778/keras-aug}},
}