Nateve
Nateve is a new general domain programming language open source inspired by languages like Python, C++, JavaScript, and Wolfram Mathematica.
Nateve is an transpiled language. Its first transpiler, Adam, is fully built using Python 3.8.
For detailed info, see the Nateve documentation.
Nateve principal features
1. Simple and easy to use
Just install the package and start coding.
2. Intuitive and easy to understand
Quickly understand the language and its features.
3. 100% free and open source
The language is free and open source. You can use it for any purpose. See the license.
4. 100% customizable
You can customize the language to your needs. You can make your own language from scratch. See the Welcome to Nateve templates section for more information.
Welcome to Nateve templates
Nateve Language includes a set of templates that can be used to customize Nateve. Templates are Python modules included in the templates subpackage. You can also create your own templates.
A template is a Python module that contains a set of words translations, functions definitions, and many other customizations. Every template can be used to customize Nateve. You just need to import the template with the using
command and then use the template in the Nateve source code.
Learn more about templates in the templates use section.
Why use Nateve templates?
1. Customization
You can customize the language to your needs. Feel free to create your own templates or modify existing templates.
2. Team work
Your team can work together using different languages in the same file or project. For example, you can start coding in English and then switch to French.
It makes it easier to work together. Different team members can work on the same project using their native languages.
3. Easy to share
Your templates can be used by other developers. You can easily share your templates with the community.
Options of command line
-
build
: Transpile Nateve source code to Python 3.8 -
run
: Run Nateve source code -
compile
: Transpile Nateve source code to an executable file (.exe) -
run-init-loop
: Run Nateve source code with an initial source and a loop source -
set-time-unit
: Set Adam time unit to seconds or miliseconds (default: milisecond) -
help
: Get help
Nateve Tutorial
In this tutorial, we will learn how to use Nateve step by step.
Requirements
Extra requirements for Quantum Computing developers
Step 0: Learn the basics
We recommend read this README.md file.
Step 1: Installation
pip
):
Recommended Installation (using Requeriments:
- pip (latest version)
1. Install adam using pip
pip install nateve
Installing Nateve using pip alows you to invoke Adam with the command adam
.
2. Add your favorite templates (optional)
If you want, you can create tour own templates in the folder Python/Libs/site-packages/adam/templates
Learn more about templates in the templates use section.
Deprecated Installation (for Nateve <= 0.0.1):
1. Download the source as a Zip
2. Unzip the source Adam-main.zip
3. Move the content of the folder Adam-main into the Python/Libs folder
You just need the subfolders:
- adam: the Nateve core
- nqs: for Quantum Computing
- user: for NQS customizable functions
Feel free to delete the examples, testing files and the other folders. DO NOT delete the file adam.bat, it will be used in the next step
4. Add the adam.bat file to the PATH
You can also move the adam.bat file into the Python/Scripts folder in order to easily add adam.bat to the PATH
Adding adam.bat to the PATH alows you to invoke Adam with the command adam
.
Instead, you can invoke Adam with the command py -m adam
without using the adam.bat file.
5. Add your favorite templates (optional)
If you want, you can create tour own templates in the folder Python/Libs/adam/templates
Learn more about templates in the templates use section.
Step 2: Create a new Nateve file
Create a file with the file extension .nate and join to the Nateve community.
Quick start examples
Hello World program
print("Hello, World!")
Is prime? program
def is_prime(n) {
if n == 1 {
return False
}
for i in range(2, n) {
if n % i == 0 {
return False
}
}
return True
}
n = ninput("Enter a number: ")
if is_prime(n) {
print("It is a prime number.")
}
else {
print("It is not a prime number.")
}
Comments
If you want to comment your code, you can use:
~ This is a single line comment ~
~
And this a multiline comment
~
Variables
This language uses variables. For declaring variables, you just need to write the name of the variable and the value of the variable.
For example:
a = 1 ~ Interger ~
b = 1.0 ~ Float ~
c = 1 + 2j ~ Complex ~
d = "hello" ~ String ~
e = True ~ Boolean ~
f = [1,2,3] ~ Vector ~
g = (1,2) ~ Tuple ~
h = Polynomial("1 +2x +x^2") ~ Polynomial ~
i = $
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
$ ~ Matrix ~
Nateve allows data type as Integer, Float, Complex, Boolean, String, Tuple, None, Vector, Polynomial and Matrix.
Vectors
The Vectors allow to use all the data types before mentioned, as well as lists and functions.
Also, they allow to get an item through the next notation:
value_list = [1,2,3,4,5]
value_list2 = [0,1,0,1,0]
print(value_list[0]) ~ Output: 1 ~
print(value_list[0 : 4]) ~ Output: [1 2 3 4] ~
print(value_list.dot(value_list2)) ~ Output: 6 ~
print(value_list.add(value_list2)) ~ Output: [1 3 3 5 5] ~
Matrices
The Matrices are a special type of vectors of vectors.
a = $
| 1 5 |
| 0 2 |
$
b = $
|0 1|
|1 0|
$
print(a)
~ Output:
| 1 5 |
| 0 2 |
~
c = a.dot(b)
print(c)
~ Output:
| 5 1 |
| 2 0 |
~
d = a.plus(b)
print(d)
~ Output:
| 1 6 |
| 1 2 |
~
Functions
For declaring a function, you have to use the next syntax:
def example_function(argument1, argument2, ...) {
~ sentence1 ~
~ sentence2 ~
...
return Return_Value
}
example_function(argument1, argument2, ...) ~ Call the function ~
Conditionals
Regarding the conditionals, the syntax structure is:
if condition {
~ consequence ~
}
elif condition {
~ other_consequence ~
}
...
else {
~ default_consequence ~
}
For example:
if x <= 1 and x % 3 == 0 {
a = 0
}
elif x == 9 {
a = 1
}
else {
a = 2
}
Loops
In order to use loops, you have to use the next syntax:
While Loop
while condition {
~ sentence1 ~
~ sentence2 ~
...
}
For Loop
for iterator in iterable {
~ sentence1 ~
~ sentence2 ~
...
}
Using Templates
One of the most important features of Nateve is the use of templates. Templates are a way to write code in a more readable way. They are words translations written in Python. In order to use templates, you just have to write the protected word "using", and then, write the name of the template. For example:
using "template_name"
Nateve includes the following standard templates:
-
"english"
: This template is used to write the code of the program in English. It is the default template. -
"spanish"
: This template is used to write the code of the program in Spanish. -
"french"
: This template is used to write the code of the program in French.
You also can use your own templates. Just create a file with the name of the template and write the code of the template in the file. Here is a blank template:
# The name of the transpiler. This line is required. Do not change it.
transpiler_name = "adam"
"""
The following code is the translation of the code.
You can write your code here and modify the content of the variables.
Do not change the name of the variables.
"""
# All the symbols that the transpiler uses.
mayusc = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alphabet = mayusc + mayusc.lower() + "_"
digits = "0123456789"
alphanum = alphabet + digits
blanks = "/t /n"
strings = ["'", '"', '"""', "'''"]
matrices = "$"
vectors = "[]"
embedded = "°"
commentaries = "~"
floating = "."
one_char_symbols = "+-*/%=<>()[]{}#@,."
two_char_symbols = ["//", "==", "<=", ">="]
# All the data types that the transpiler uses.
FLOAT = "float"
INT = "int"
COMPLEX = "complex"
STRING = "string"
DOCSTRING = "docstring"
NULL = "none"
MATRIX = "matrix"
VECTOR = "vector"
# All the keywords that the transpiler uses.
USE, INCLUDE = "using", "include"
IMPORT, FROM, AS, PASS, IN = "import", "from", "as", "pass", "in"
IF, ELIF, ELSE = "if", "elif", "else"
TRY, EXCEPT, WITH = "try", "except", "with"
WHILE, FOR, BREAK, CONTINUE = "while", "for", "break", "continue"
OPERATOR, RETURN = "def", "return"
CLASS, SELF = "class", "self"
AND, OR, NOT, TRUE, FALSE = "and", "or", "not", "True", "False"
# All the status codes that the transpiler uses.
embedding = 200
identifier = 300
eof = 400
# All extra functions that the transpiler uses. Feel free to add your own functions.
# The string special_functions is used to write these functions.
# You can use variables in it using the fstring notation.
special_functions = f"""
def ninput(prompt = '', default = ''):
return float(input(prompt, default))
def binput(prompt = '', default = ''):
return bool(input(prompt, default))
def update_std():
subprocess.call([sys.executable, '-m', 'pip', 'install', 'eggdriver'])
"""
Some Examples
~Nateve Example 1~
update_std() ~update std library~
for i in range(2) {
print(i)
}
install("matplotlib")
try {
print(2/0)
}
except {
print("xd")
}
Output:
0
1
matplotlib successfully installed
xd
~Nateve Example 2~
theta = pi/3
print(sin(theta), cos(theta), tan(theta))
p = sin_serie
print(p.eval(theta))
derive(p)
print(p.eval(theta))
import numpy as np
x = "hello"
c = Matrix("""
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
""")
c.display()
a = Vector("[ 1 2 3 4 5 6 30 0 9]")
a.display()
Output:
0.8660254037844386 0.5000000000000001 1.73205080756887
0.8660254037844386
0.5000000000000001
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
[ 1 2 3 4 5 6 30 0 9 ]
~Nateve Example 3~
using "spanish"
theta = pi/3
imprime(sen(theta), cos(theta), tan(theta))
p = serie_sen
imprime(p.eval(theta))
deriva(p)
imprime(p.eval(theta))
importa numpy como np
x = "hello"
c = Matriz("""
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
""")
c.display()
a = Vector("[ 1 2 3 4 5 6 30 0 9]")
a.display()
Output:
0.8660254037844386 0.5000000000000001 1.73205080756887
0.8660254037844386
0.5000000000000001
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
[ 1 2 3 4 5 6 30 0 9 ]
~Nateve Example 4~
using "spanish"
amo_Nateve = verdadero
si amo_Nateve == verdadero {
imprime("Yo amo Nateve!")
}
delocontrario {
imprime("Odio Nateve :c")
}
usando "english"
if 1 < 3 {
print("Try Nateve!")
}
else {
print("NO")
}
using "french"
v = "Bonjour"
imprimer(v, "Nateve!")
Output:
Yo amo Nateve!
Try Nateve!
Bonjour Nateve!
~Nateve Example 5~
include "example4.nate"
using "spanish"
imprime("Nateve example 5")
Output:
Yo amo Nateve!
Try Nateve!
Bonjour Nateve!
Nateve example 5
~Nateve Example 6~
using "spanish"
incluye "example5.nate"
a = $
| 1 5 |
| 0 2 |
$
b = $
|0 1|
|1 0|
$
imprime("a = ")
imprime(a)
imprime("b = ")
imprime(b)
c = a.dot(b)
imprime("a * b =")
imprime(c)
imprime("a + b =")
print(a.plus(b))
d = [1, 2, 3, 4, 5]
imprime(d)
e = [0, 1, 0, 1, 0]
imprime(e)
f = d.dot(e)
imprime(f)
g = d.plus(e)
imprime(g)
~ using spanish, "y" means "and".
Then, we need to use other template like french ~
using "french"
definir r(x, y, z){
retourner $
|x|
|y|
|z|
$
}
x, y, z = 1, 5, 3
j = r(x, y, z)
imprimer(j)
k = $
|2 0 0|
|0 2 0|
|0 0 2|
$
imprimer(k.dot(j))
Output:
Yo amo Nateve!
Try Nateve!
Bonjour Nateve!
Nateve example 5
a =
| 1 5 |
| 0 2 |
b =
| 0 1 |
| 1 0 |
a * b =
| 5 1 |
| 2 0 |
a + b =
| 1 6 |
[1, 2, 3, 4, 5]
[0, 1, 0, 1, 0]
6
[1, 3, 3, 5, 5]
| 1 |
| 5 |
| 3 |
| 2 |
| 10 |
| 6 |
Feedback
I would really appreciatte your feedback. You can submit a new issue.
Contribute
This is an opensource project, everyone can contribute and become a member of the community of Nateve.
Why be a member of the Nateve community?
1. A simple and understandable code
The source code of Adam is made with Python 3.8, a language easy to learn, also good practices are a priority for this project.
2. A great potencial
This project has a great potential to be the next programming language for education, to develop the quantum computing, and to develop the AI.
3. Simple
One of the main purposes of this programming language is to create an easy-to-learn language, which at the same time is capable of being used for many different purposes.
4. Respect for diversity
Everybody is welcome, it does not matter your genre, experience or nationality. Anyone with enthusiasm can be part of this project. Anyone from the most expert to the that is beginning to learn about programming, marketing, design, or any career.
How to start contributing?
There are multiply ways to contribute, since sharing this project, improving the brand of SigmaF, helping to solve the bugs or developing new features and making improves to the source code.
-
Share this project: You can put your star in the repository, use the topic nateve or talk about this project. You can use the hashtag #Nateve in Twitter, LinkedIn or any social network too.
-
Improve the brand of Nateve: If you are a marketer, designer or writer, and you want to help, you are welcome.
-
Help to solve the bugs: if you find one bug notify us an issue. On this we can all improve this language.
-
Developing new features: If you want to develop new features or making improvements to the project, you can do a fork to the
dev
branch (here are the ultimate develops) working there, and later do apull request
todev
branch in order to update Nateve.