Recreating PyTorch from scratch (C/C++, CUDA and Python, with multi-GPU support and automatic differentiation!)
Project details explanations can also be found on medium.
PyNorch is a deep learning framework constructed using C/C++, CUDA and Python. This is a personal project with educational purpose only! Norch
means NOT PyTorch, and we have NO claims to rivaling the already established PyTorch. The main objective of PyNorch was to give a brief understanding of how a deep learning framework works internally. It implements the Tensor object, multi-GPU support and an automatic differentiation system.
Install this package from PyPi (you can test on Colab! Also tested on AWS g4dn.12xlarge instance with image ami-061debf863768593d)
$ pip install norch
or from cloning this repository
$ git clone https://github.com/lucasdelimanogueira/PyNorch.git
$ cd PyNorch
$ pip install . -v
import norch
x1 = norch.Tensor([[1, 2],
[3, 4]], requires_grad=True).to("cuda")
x2 = norch.Tensor([[4, 3],
[2, 1]], requires_grad=True).to("cuda")
x3 = x1 @ x2
result = x3.sum()
result.backward
print(x1.grad)
import norch
import norch.nn as nn
import norch.optim as optim
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(1, 10)
self.sigmoid = nn.Sigmoid()
self.fc2 = nn.Linear(10, 1)
def forward(self, x):
out = self.fc1(x)
out = self.sigmoid(out)
out = self.fc2(out)
return out
# examples/train_singlegpu.py
import norch
from norch.utils.data.dataloader import DataLoader
from norch.norchvision import transforms as T
import norch
import norch.nn as nn
import norch.optim as optim
import random
random.seed(1)
BATCH_SIZE = 32
device = "cuda" #cpu
epochs = 10
transform = T.Compose(
[
T.ToTensor(),
T.Reshape([-1, 784, 1])
]
)
target_transform = T.Compose(
[
T.ToTensor()
]
)
train_data, test_data = norch.norchvision.datasets.MNIST.splits(transform=transform, target_transform=target_transform)
train_loader = DataLoader(train_data, batch_size = BATCH_SIZE)
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(784, 30)
self.sigmoid1 = nn.Sigmoid()
self.fc2 = nn.Linear(30, 10)
self.sigmoid2 = nn.Sigmoid()
def forward(self, x):
out = self.fc1(x)
out = self.sigmoid1(out)
out = self.fc2(out)
out = self.sigmoid2(out)
return out
model = MyModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
loss_list = []
for epoch in range(epochs):
for idx, batch in enumerate(train_loader):
inputs, target = batch
inputs = inputs.to(device)
target = target.to(device)
outputs = model(inputs)
loss = criterion(outputs, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch + 1}/{epochs}], Loss: {loss[0]:.4f}')
loss_list.append(loss[0])
First create a file .py as the example below
# examples/train_multigpu.py
import os
import norch
import norch.distributed as dist
import norch.distributed
import norch.nn as nn
import norch.optim as optim
from norch.nn.parallel import DistributedDataParallel
from norch.utils.data.distributed import DistributedSampler
from norch.norchvision import transforms as T
import random
random.seed(1)
local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK', -1))
rank = int(os.getenv('OMPI_COMM_WORLD_RANK', -1))
world_size = int(os.getenv('OMPI_COMM_WORLD_SIZE', -1))
dist.init_process_group(
rank,
world_size
)
BATCH_SIZE = 32
device = local_rank
epochs = 10
transform = T.Compose(
[
T.ToTensor(),
T.Reshape([-1, 784, 1])
]
)
target_transform = T.Compose(
[
T.ToTensor()
]
)
train_data, test_data = norch.norchvision.datasets.MNIST.splits(transform=transform, target_transform=target_transform)
distributed_sampler = DistributedSampler(dataset=train_data, num_replicas=world_size, rank=rank)
train_loader = norch.utils.data.DataLoader(train_data, batch_size=BATCH_SIZE, sampler=distributed_sampler)
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(784, 30)
self.sigmoid1 = nn.Sigmoid()
self.fc2 = nn.Linear(30, 10)
self.sigmoid2 = nn.Sigmoid()
def forward(self, x):
out = self.fc1(x)
out = self.sigmoid1(out)
out = self.fc2(out)
out = self.sigmoid2(out)
return out
model = MyModel().to(device)
model = DistributedDataParallel(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
loss_list = []
print(f"Starting training on Rank {rank}/{world_size}\n\n")
for epoch in range(epochs):
for idx, batch in enumerate(train_loader):
inputs, target = batch
inputs = inputs.to(device)
target = target.to(device)
outputs = model(inputs)
loss = criterion(outputs, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if rank == 0:
print(f'Epoch [{epoch + 1}/{epochs}], Loss: {loss[0]:.4f}')
loss_list.append(loss[0])
Then you can run using
$ python3 -m norch.distributed.run --nproc_per_node 4 examples/train_multigpu.py
Development | Status | Feature |
---|---|---|
Operations | in progress |
|
Loss | in progress |
|
Data | in progress |
|
Convolutional Neural Network | in progress |
|
Distributed | in progress |
|