phylotoast

Useful additions to the QIIME analysis pipeline including tools for data visualization and cluster-computing.


Keywords
bioinformatics, QIIME, phylotoast, microbial ecology, 16S, microbiology, computational-biology, cross-platform, hpc, microbial-genomics, microbiome, microbiome-analysis, pbs, phylogenetics, python, slurm, visualization
License
MIT
Install
pip install phylotoast==1.3.0

Documentation

PhyloToAST

Latest Version License Download format Travis CI build status https://img.shields.io/badge/install%20with-bioconda-4682b4.svg?style=plastic images/readmepic.png

The PhyloToAST project is a collection of python code and scripts that modify the QIIME [1] pipeline by adding/changing several steps including: support for cluster-computing, multiple primer support (eliminate primer bias) [2], enhanced support for species-specific analysis, and additional visualization tools.

Installation

To install PhyloToAST from PyPI:

$ pip install phylotoast

From source:

$ python setup.py install

Documentation

Full documentation for the scripts and code is available at the PhyloToAST documentation site

Requirements

The list of required modules will vary depending on which executable scripts and/or parts of the API you may use. For this reason there are no required dependencies that will be automatically installed along with PhyloToAST. Each executable script will check that the required libraries are installed and will print a message if any are not found.

If you would like to install everything up front, the following is a complete list of libraries that are used in PhyloToAST:

  • numpy
  • scipy
  • matplotlib >= 1.5.0
  • biopython >= 1.60
  • scikit-bio
  • scikit-learn
  • pandas
  • statsmodels
  • brewer2mpl
  • biom-format >= 2.1.5
  • h5py (for parsing BIOM v2.x format files)

Source

The PhyloToAST source is hosted on github.

Citing

Dabdoub, S.M. et al., PhyloToAST: Bioinformatics tools for species-level analysis and visualization of complex microbial communities. 2016. (Manuscript in revision).

Publications using PhyloToAST

Tsigarida and Dabdoub et al., The Influence of Smoking on the Peri-Implant Microbiome. Journal of Dental Research, 2015; doi: 10.1177/0022034515590581

Mason et al., The subgingival microbiome of clinically healthy current and never smokers. The ISME Journal, 2014; doi:10.1038/ismej.2014.114

Dabdoub et al., Patient-specific Analysis of Periodontal and Peri-implant Microbiomes. Journal of Dental Research, 2013; doi: 10.1177/0022034513504950

References

[1] J Gregory Caporaso, et al., QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010; doi:10.1038/nmeth.f.303

[2] Kumar PS, et al., Target Region Selection Is a Critical Determinant of Community Fingerprints Generated by 16S Pyrosequencing. PLoS ONE (2011) 6(6): e20956. doi:10.1371/journal.pone.0020956