robust-deep-learning

The Robust Deep Learning Library


Keywords
pytorch, isomax, isomax+, dismax, anomaly-detection, classification, deep-learning, deep-neural-networks, machine-learning, novelty-detection, ood-detection, open-set, open-set-recognition, out-of-distribution, out-of-distribution-detection, robust-deep-learning, robust-machine-learning, trustworthy-ai, trustworthy-machine-learning, uncertainty-calibration, uncertainty-estimation, uncertainty-neural-networks
License
Apache-2.0
Install
pip install robust-deep-learning==0.1.1

Documentation

The Robust Deep Learning Library

TRAIN OR FINE-TUNE

Train your model from scratch or fine-tune a pretrained model using the losses provided in this library to improve out-of-distribution detection and uncertainty estimation performances.

CALIBRATE

Calibrate your model to produce enhanced uncertainty estimations.

DETECT

Detect out-of-distribution data using the defined score type and threshold.

Features

  • Model Independent:

Use models from timm library or whatever you want.

  • Data Independent:

Most cases work for any type of media (e.g., image, text, audio, and others).

  • Large-Scale Models and Data:

Train using large-scale models and data (e.g., ImageNet).

  • Efficient Inferences:

The trained models are as efficient as the ones trained using the cross-entropy loss.

  • Hyperparameter-Free:

There is no hyperparameter to tune. "You only train once" (YOTO).

  • Standard Interface:

Use the same API to train models with improved robustness using different losses.

  • No Need for Additional Data:

The losses used in this library do not require collecting or using additional data.

  • Temperature Calibration:

Calculate the Uncertainty Estimation and update the temperature of the output last layer.

  • Scalability: More data, Bigger Models, Better Results!

Entropic losses perform better and better as the size of the data and model increase.

  • Threshold Computation:

Compute the threshold for deciding regarding out-of-distribution examples.

  • Scores Computation:

Compute the scores opting from a set of many different types available.

  • Detect Out-of-Distribution:

Detect out-of-distribution examples using the computed scores.

  • State-of-the-art:

SOTA results for out-of-distribution detection and uncertainty estimation.

Results

Dataset=ImageNet, Model=ResNet18, Near OOD=ImageNet-O

Loss [Score] Class (ACC) Near OOD (AUROC)
Cross-Entropy [MPS] 69.9 52.4
DisMax [MMLES] 69.6 75.8

Dataset=CIFAR

Installation

pip install robust-deep-learning

Usage

# Import the robust deep learning library as rdl
import robust_deep_learning as rdl

#####################################################################################################
#####################################################################################################
# Training or Fine-tuning
#####################################################################################################
#####################################################################################################

#########################################################
# Option 1: Creating a custom model and defining the loss
#########################################################

# Create from a model definition file. 
# For example, import a class "Model" from a model definition file.
model = Model()
# Load a pretrained model if fine-tuning rather than training from scratch (random weights).
# model.load_state_dict(torch.load(pre_trained_file_name, map_location="cuda:" + str(args.gpu)))

# Chance the output last layer of the model with the desired loss first part.
# If the name of the output last layer of the model is unknown, print it with "print(model)".
# For example, if the output last layer is called "classifier":
# "model.classifier = nn.Linear(num_features, num_classes)"
# Then, replace this output layer (usually a linear layer) by adding the following line: 
model.classifier = rdl.DisMaxLossFirstPart(num_features, num_classes)

# Replace the Cross-Entropy Loss.
# The first argument is the name of the output last layer of the model used above.
# In case of training using a not too constrained model on image data, pass an add-on.
# Currently, only DisMax has one add-on called "FPR".
# Otherwise, do not pass add-on or simple pass "add_on=None". 
criterion = rdl.DisMaxLossSecondPart(model.classifier, add_on="FPR", gpu=None)

#######################################################
# Option 2: Creating a timm model and defining the loss
#######################################################

# For using a model from timm lib, use "create_model" functionality.
# It is possible to start from a pretrained model to fine-tune using the desired loss.
model = timm.create_model('resnet18', pretrained=False)

# Chance the output last layer of the model with the desired loss first part.
# If the name of the output last layer of the model is unknown, print it with "print(model)".
# For example, if the output last layer is called "fc":
# "model.fc = nn.Linear(num_features, num_classes)"
# Then, replace this output layer (usually a linear layer) by adding the following line: 
model.fc = rdl.DisMaxLossFirstPart(model.get_classifier().in_features, num_classes)

# Replace the Cross-Entropy Loss.
# The first argument is the name of the output last layer of the model used above.
# In case of training using a not too constrained model on image data, pass an add-on.
# Currently, only DisMax has one add-on called "FPR".
# Otherwise, do not pass add-on or simple pass "add_on=None". 
criterion = rdl.DisMaxLossSecondPart(model.fc, add_on="FPR", gpu=None)

############################
# Checking the training loop
############################

for epoch in epochs:

    # Training loop
    for inputs, targets in in_data_train_loader:

        # In the training loop, add the line below for preprocessing before forwarding.
        # This is only required if using add_on other than None. Otherwise, this line is not needed.
        inputs, targets = criterion.preprocess(inputs, targets) 

        # The three below lines are usually found in the training loop!
        # These lines must not be changed!
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()

#####################################################################################################
#####################################################################################################
# Uncertainty Estimation
#####################################################################################################
#####################################################################################################

#############
# Calibrating
#############

# Get outputs, labels, accuracy, expected calibration error (ECE), and negative log-likelihood (NLL).
results = rdl.get_outputs_labels_and_metrics(model, in_data_val_loader, gpu=None)

# Calculate probabilities and verify the values returned above. 
probabilities = torch.nn.Softmax(dim=1)(results["outputs"])
print(probabilities)
print(results["acc"], results["ece"], results["nll"])

# Calibrate the temperature passing the output last layer, the model, and the validation set.
# Choose the metric to optimize. For example, "ECE" (the only option for now).
rdl.calibrate_temperature(model.classifier, model, in_data_val_loader, optimize="ECE", gpu=None)
#rdl.calibrate_temperature(model.fc, model, in_data_val_loader, optimize="ECE")

# Verify the novel value of the temperature of the output last layer.
print(model.classifier.temperature)

######################
# Verifing calibration
######################

# Get the results again using the calibrated model.
results = rdl.get_outputs_labels_and_metrics(model, in_data_val_loader, gpu=None)

# Verifiy the probabilities, ECE, and NLL are improved regarding the now calibrated model.
probabilities = torch.nn.Softmax(dim=1)(results["outputs"])
print(probabilities)
print(results["acc"], results["ece"], results["nll"])

####################################################################################################
####################################################################################################
# Out-of-Distribution Detection
####################################################################################################
####################################################################################################

########################
# Estimating performance
########################

# Define a score type. Typically, the best/recommended option for the loss you are using.
score_type = "MMLES"

# Evaluate the out-of-distribution detection performance passing loaders.
ood_metrics = rdl.get_ood_metrics(
    model, in_data_val_loader, out_data_loader, score_type, fpr=0.05, gpu=None)

# Optionally, first get in-data scores:
results = rdl.get_outputs_labels_and_metrics(model, in_data_val_loader, gpu=None)
in_data_scores = rdl.get_scores(results["outputs"], score_type)

# Second, get out-data scores:
results = rdl.get_outputs_labels_and_metrics(model, out_data_loader, gpu=None)
out_data_scores = rdl.get_scores(results["outputs"], score_type)

# Then, finally, evaluate the out-of-distribution detection performance passing scores.
ood_metrics = rdl.get_ood_metrics_from_scores(in_data_scores, out_data_scores, fpr=0.05)

######################################
# Detecting (still testing this part))
######################################

# Before detecting, it is necessary to compute the thresholds.
thresholds = rdl.get_thresholds(model, in_data_val_loader, score_type, gpu=None)

# Optionaly, it is possible to compute the threshold using in-data scores.
#thresholds = rdl.get_thresholds(results["outputs"], score_types="MMLES")
thresholds = rdl.get_thresholds_from_scores(in_data_scores) # guarder 

# After calculating thresholds, detection may be performed.
# Some test input may be obtained using: input = next(iter(in_data_val_loader))
ood_detections = rdl.get_ood_detections(model, inputs, thresholds, fpr="0.05", gpu=None)

Losses and Scores

The following losses are implemented:

The following scores are implemented:

Experiments

Install the requirements to reproduce the experiments of this library:

pip install -r requirements.txt

Please, move to the data directory and run all the prepare data bash scripts:

# Download and prepare out-of-distrbution data for CIFAR10 and CIFAR100 datasets.
./prepare-cifar.sh
# Download and prepare out-of-distrbution data for ImageNet.
./prepare-imagenet.sh

Run the experiments:

./run_cifar100_densenetbc100.sh*
./run_cifar100_resnet34.sh*
./run_cifar100_wideresnet2810.sh*
./run_cifar10_densenetbc100.sh*
./run_cifar10_resnet34.sh*
./run_cifar10_wideresnet2810.sh*
./run_imagenet1k_resnet18.sh*

Analize the results:

./analize.sh

Citation

Please, cite our papers if you use our losses in your work:

@INPROCEEDINGS{9533899,
  author={Macêdo, David and Ren, Tsang Ing and Zanchettin, Cleber and Oliveira, 
  Adriano L. I. and Ludermir, Teresa},
  booktitle={2021 International Joint Conference on Neural Networks (IJCNN)}, 
  title={Entropic Out-of-Distribution Detection}, 
  year={2021},
  pages={1-8},
  doi={10.1109/IJCNN52387.2021.9533899}
}
@ARTICLE{9556483,
  author={Macêdo, David and Ren, Tsang Ing and Zanchettin, Cleber and Oliveira, 
  Adriano L. I. and Ludermir, Teresa},
  journal={IEEE Transactions on Neural Networks and Learning Systems}, 
  title={Entropic Out-of-Distribution Detection:
  Seamless Detection of Unknown Examples}, 
  year={2022},
  volume={33},
  number={6},
  pages={2350-2364},
  doi={10.1109/TNNLS.2021.3112897}
}
@article{DBLP:journals/corr/abs-2105-14399,
  author    = {David Mac{\^{e}}do and
               Teresa Bernarda Ludermir},
  title     = {Enhanced Isotropy Maximization Loss: 
  Seamless and High-Performance Out-of-Distribution Detection
  Simply Replacing the SoftMax Loss},
  journal   = {CoRR},
  volume    = {abs/2105.14399},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.14399},
  eprinttype = {arXiv},
  eprint    = {2105.14399},
  timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-14399.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-2205-05874,
  author    = {David Mac{\^{e}}do and
               Cleber Zanchettin and
               Teresa Bernarda Ludermir},
  title     = {Distinction Maximization Loss:
  Efficiently Improving Out-of-Distribution Detection and Uncertainty Estimation
  Simply Replacing the Loss and Calibrating},
  journal   = {CoRR},
  volume    = {abs/2205.05874},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.05874},
  doi       = {10.48550/arXiv.2205.05874},
  eprinttype = {arXiv},
  eprint    = {2205.05874},
  timestamp = {Tue, 17 May 2022 17:31:03 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-05874.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-2208-03566,
  author    = {David Mac{\^{e}}do},
  title     = {Towards Robust Deep Learning using Entropic Losses},
  journal   = {CoRR},
  volume    = {abs/2208.03566},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2208.03566},
  doi       = {10.48550/arXiv.2208.03566},
  eprinttype = {arXiv},
  eprint    = {2208.03566},
  timestamp = {Wed, 10 Aug 2022 14:49:54 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2208-03566.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}