solsim

The Solana complex systems simulator.


Keywords
complex-systems, simulation, solana
License
MIT
Install
pip install solsim==0.1.2

Documentation

solsim


Discord Chat

Tests Lint

solsim is the Solana complex systems simulator. It simulates behavior of dynamical systemsβ€”DeFi protocols, DAO governance, cryptocurrencies, and moreβ€”built on the Solana blockchain.

Philosophy

Define your system how you see fit.

solsim will simulate its behavior and collect its results in a structured, straightforward manner.

Usage

  1. Implement initialStep and step methods.
  2. From each, return the current state, i.e. a dictionary mapping variables to current values.
  3. Specify the variables you'd like to "watch."
  4. Instantiate a Simulation, call .run().
  5. Receive a pandas DataFrame containing values of "watched" variables at each step in time.

With Solana

from anchorpy import Context
from solana.keypair import Keypair
from solsim.simulation import Simulation

class SomeSolanaSystem(BaseSolanaSystem):
    def __init__(self):
        super().__init__("path/to/workspace")
        self.account = Keypair()
        self.pubkey = self.account.public_key
        self.program = self.workspace["my_anchor_program"]  # solsim gives a Anchor program workspace (self.workspace).

    async def initialStep(self):
        self.program.rpc["initialize"]()  # Make RPC calls to your Anchor program.
        await self.client.request_airdrop(self.pubkey, 10)  # solsim gives you a Solana API client (self.client).
        return {"balance": await self.client.get_balance(self.pubkey)}

    async def step(self, state, history):
        self.program.rpc["submit_uniswap_trade"](
            ctx=Context(accounts={"account": self.pubkey}, signers=[self.account])
        )
        return {"balance": await self.client.get_balance(self.account)}


simulation = Simulation(system=SomeSolanaSystem(), watchlist=("balance"), n_steps=5)
results = simulation.run()  # Returns pandas DataFrame of results.

Without Solana

class SomeSystem(BaseSystem):
    def __init__(self, population):
        self.pop = population

    def initialStep(self):
        return {"population": self.pop}

    def step(self, state, history):
        return {"population": state["population"] * 1.1}


simulation = Simulation(system=SomeSystem(), watchlist=("population"), n_steps=5)
results = simulation.run()

Results Explorer

solsim gives you a streamlit app to explore results, e.g.

Installation

First, install Anchor.

Library

pip install solsim

Development

Install poetry. Then,

git clone --recurse-submodules https://github.com/cavaunpeu/solsim.git
cd solsim
poetry install
poetry shell

Detailed Usage

With Solana

First, write your Solana program. solsim prefers you do this in Anchor. Then,

  1. Write a system class that inherits from BaseSolanaSystem.
  2. Call super().__init__("path/to/program") in its __init__.
  3. Implement initialStep and step methods. (Since you'll interact with Solana asynchronously, these methods should be async.)

In 2., solsim exposes the following attributes to your system instance:

  • self.workspace: IDL clients for the Solana programs that comprise your system (via anchorpy).

For example, these clients let you interact with your respective programs' RPC endpoints.

  • self.client: a general Solana client (via solana-py).

This client lets you interact with Solana's RPC endpoints. Documentation here.

Finally,

  1. Define a watchlist: variables (returned in initialStep and step) you'd like to "watch."
  2. Instantiate and run your simulation, e.g. Simulation(MySystem(), watchlist, n_steps=10).run().

Without Solana

  1. Write a system class that inherits from BaseSystem.
  2. Implement initialStep and step methods.
  3. Define a watchlist.
  4. Instantiate and run your simulation.

Examples

Drunken Escrow

Agents are randomly paired to exchange random amounts of foo_coin and bar_coin via an Anchor escrow contract in each timestep.

  • Run: python -m examples.drunken_escrow.
  • Code: here.
  • Expected output (numbers may vary):
(.venv) ➜  solsim git:(main) $ python -m examples.drunken_escrow
Waiting for Solana localnet cluster to start (~10s) ...
Steps completed: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:27<00:00,  6.82s/it]
   step  mean_balance_spread  mean_swap_amount  num_swaps
0    -1            40.000000         30.666667          3
1     0            58.000000         12.000000          3
2     1            60.666667          4.000000          3
3     2            83.333333         21.500000          2

Lotka-Volterra

The Lotka-Volterra model is a classic dynamical system in the field of ecology that tracks the evolution of interdependent predator and prey populations.

  • Run: python -m examples.lotka_volterra.
  • Code: here.
  • Expected output:
(.venv) ➜  solsim git:(main) βœ— python -m examples.lotka_volterra
Steps completed: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 28581.29it/s]
   step  food_supply  population_size
0    -1     1000.000            50.00
1     0      995.000            60.00
2     1      989.000            69.95
3     2      982.005            79.84

This implementation inspired by cadCAD Edu.

Inspiration

solsim humbly builds on the shoulders of the giants that are cadCAD and tokenspice, among others.